Mr. Standring's Chemistry 30 Review Package 2013

Table of Contents:

Pages are in order, but many are missing. Just look for the page #'s at the bottom left or right corner.

Page #	Торіс	Text Pages
1-16	Study Aids	
24-66	Review Material (Prerequisite for our stuff)	4-73
294-320	Hydrocarbons (Alkanes etc.) the Petroleum Industry	350-409
322-356	Organic Reactions	410-475
360-403	Enthalpy Change	476-521
405-416	Catalysis & Energy Curves	522-553
422-449	Redox Reactions	554-609
453-485	Electrochemical Cells	610-671
492-515	Equilibrium Systems	672-709
519-559	Equilibrium in Acid-Base Systems	710-780

Each section ends with a checklist of necessary knowledge, skills & connections

Solution packages are available for use in class

The Ten Study Habits of Successful Students

Successful students have good study habits. They apply these habits to all of their classes. Read about each study habit. Work to develop any study habit you do not have.

Successful students:

1. Try not to do too much studying at one time.

If you try to do too much studying at one time, you will tire and your studying will not be very effective. Space the work you have to do over shorter periods of time. Taking short breaks will restore your mental energy.

2. Plan specific times for studying.

Study time is any time you are doing something related to schoolwork. It can be completing assigned reading, working on a paper or project, or studying for a test. Schedule specific times throughout the week for your study time.

3. Try to study at the same times each day.

Studying at the same times each day establishes a routine that becomes a regular part of your life, just like sleeping and eating. When a scheduled study time comes up during the day, you will be mentally prepared to begin studying.

4. Set specific goals for their study times.

Goals will help you stay focused and monitor your progress. Simply sitting down to study has little value. You must be very clear about what you want to accomplish during your study times.

5. Start studying when planned.

You may delay starting your studying because you don't like an assignment or think it is too hard. A delay in studying is called "procrastination." If you procrastinate for any reason, you will find it difficult to get everything done when you need to. You may rush to make up the time you wasted getting started, resulting in careless work and errors.

6. Work on the assignment they find most difficult first.

Your most difficult assignment will require the most effort. Start with your most difficult assignment since this is when you have the most mental energy.

7. Review their notes before beginning an assignment.

Reviewing your notes can help you make sure you are doing an assignment correctly. Also, your notes may include information that will help you complete an assignment.

- 8. Tell their friends not to call (or text or instant message or Skype or whatever other new fandangled thing the kids use to communicate nowadays) them during their study times. Two study problems can occur if your friends call you during your study times. First, your work is interrupted. It is not that easy to get back to what you were doing. Second, your friends may talk about things that will distract you from what you need to do. Here's a simple idea turn off your cell phone during your study times.
- 9. Call another student when they have difficulty with an assignment. This is a case where "two heads may be better than one."
- 10. **Review their schoolwork over the weekend.** Yes, weekends should be fun time. But there is also time to do some review. This will help you be ready to go on Monday morning when another school week begins.

These ten study habits can help you throughout your education. Make sure they are your study habits.

Your notes here \rightarrow _____

Student Worksheet Graphic Organizers

Graphic organizers are a visual means of organizing information, note taking, showing relationships among ideas and concepts, and solidifying your understanding of a topic. Learning occurs as you make the organizers, which is why they are sometimes called "thinking tools." There are many kinds of graphic organizers; select the style that best suits the intended purpose.

PMI Chart

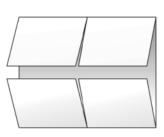
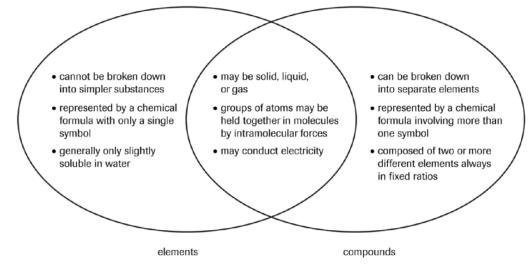

A PMI chart is used to examine both sides of an issue. Positive aspects of a topic or issue are recorded in the P (plus) column. Negative aspects are recorded in the M (minus) column. Interesting or controversial questions are recorded in the I (interesting) column (Table 1).

Table 1	A PMI (Chart
---------	---------	-------

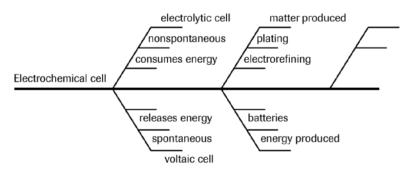
Р	Μ	

3-D Paper Organizers

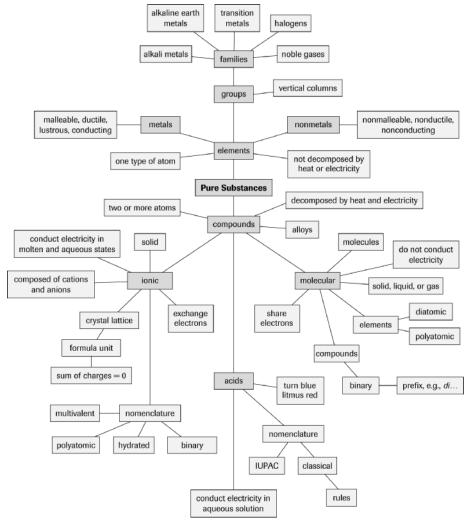

Graphic organizers that make use of cutting and folding paper are useful tools for some students. These manipulatives may be used to compare and contrast related concepts, or (in the form of flip-chart booklets) to list many items. They can also incorporate Venn diagrams. They provide a very strong organizational structure that supports student learning. All that is needed is brightly coloured sheets of strong paper, scissors, and possibly tape.

(These manipulatives have been popularized as Foldables [™] by Dinah Zike, whose books provide many creative applications.)

Venn Diagram


A Venn diagram is used to show similarities and differences in two or more concepts. Write all similarities between the concepts in the overlapping section of the circles and all unique features of each concept in the nonoverlapping parts of the appropriate circles.

LSM G.8 (cont'd.)


Fishbone Diagram

A fishbone diagram is used to identify separate causes and effects. In the head of the fish, identify the effect, topic, or result. At the end of each major bone, identify the major subtopics or categories. On the minor bones that attach to each major bone, add details about the subtopics or possible causes of each effect or result.

The Concept Map

Concept maps are used to show connections between ideas, using words or visuals. Put the central idea in the middle of a sheet of paper and organize the most closely related ideas around it. Draw lines between related ideas. Some concept maps include connecting words alongside the lines, to emphasize the relationship between terms.

The following words are often used in a variety of questions that you may be asked to answer. Become familiar with these words and their specific meanings in context. This familiarity will also help to prepare you for Diploma Examination questions.

algebraically	using mathematical procedures that involve letters or symbols to represent numbers
analyze	to make a mathematical, chemical, or methodical examination of parts to determine the nature, proportion, function, interrelationship, etc. of the whole
compare	examine the character or qualities of two things by providing characteristics of both that point out their <i>similarities</i> and <i>differences</i>
conclude	state a logical end based on reasoning and/or evidence
contrast/distinguish	point out the <i>differences</i> between two things that have similar or comparable natures
criticize	point out the <i>demerits</i> of an item or issue
define	provide the essential qualities or meaning of a word or concept; make distinct and clear by marking out the limits
describe	give a written account or represent the characteristics of something by a figure, model, or picture
design/plan	construct a plan; i.e, a detailed sequence of actions for a specific purpose
determine	find a solution, to a specified degree of accuracy, to a problem by showing appropriate formulas, procedures, and calculations
enumerate	specify one by one or list in concise form and according to some order
evaluate	give the significance or worth of something by identifying the good and bad points or the advantages and disadvantages
explain	make clear what is not immediately obvious or entirely known; give the cause of or reason for; make known in detail
graphically	using a drawing that is produced electronically or by hand and that shows a relation between certain sets of numbers
how	show in what manner or way, with what meaning
hypothesize	form a tentative proposition intended as a possible explanation for an observed phenomenon; i.e., a possible cause for a specific effect. The proposition should be testable logically and/or empirically
identify	recognize and select as having the characteristics of something
illustrate	make clear by giving an example. The form of the example must be specified in the question; i.e., word description, sketch, or diagram
infer	form a generalization from sample data; arrive at a conclusion by reasoning from evidence
interpret	tell the meaning of something; present information in a new form that adds meaning to the original data

justify/show how	show reasons for or give facts that support a position
model	find a model (in mathematics, a model of a situation is a pattern that is supposed to represent or set a standard for a real situation) that does a good job of representing a situation
outline	give, in an organized fashion, the essential parts of something. The form of the outline must be specified in the question; i.e., list, flow chart, concept map
predict	tell in advance on the basis of empirical evidence and/or logic
prove	establish the truth or validity of a statement for the general case by giving factual evidence or logical argument
relate	show logical or causal connection between things
sketch	provide a drawing that represents the key features of an object or graph
solve	give a solution for a problem; i.e., explanation in words and/or numbers
summarize	give a brief account of the main points
trace	give a step-by-step description of the development
verify	establish, by substitution for a particular case or by geometric comparison, the truth of a statement
why	show the cause, reason, or purpose

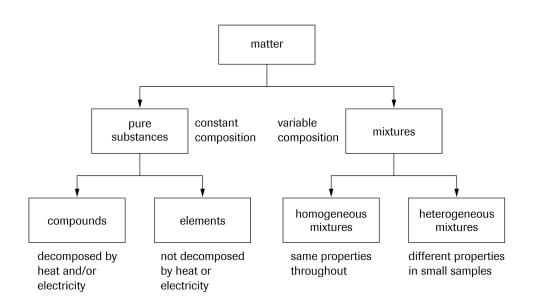
This list is also available on the Alberta Education Web site, at:

http://www.edc.gov.ab.ca/k_12/testing/diploma/bulletins/essential/directing_words.asp.

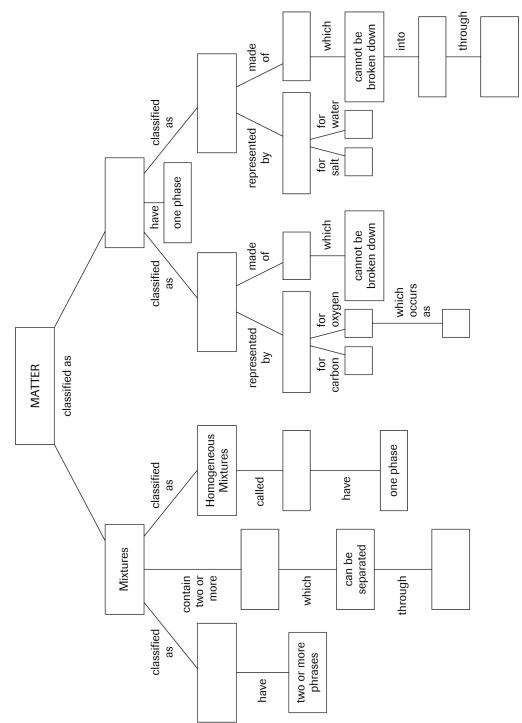
Student Worksheet Solutions LSM G.11 Solutions for Identifying and Defining Directing Words, Extra Exercise

- 1. (a) Evaluate: IV (Give the significance or worth of something by identifying the good and bad points or the advantages and disadvantages.)
 - (b) Identify: V (Recognize and select as having the characteristics of something.)
 - (c) Trace: I (Give a step-by-step description of the development.)
 - (d) Infer: (Form a generalization from sample data; arrive at a conclusion by reasoning from evidence.)
 - (e) Sketch: (Provide a drawing that represents the key features of an object or graph.)
 - (f) Illustrate: (Make clear by giving an example. The form of the example must be specified in the question; i.e., word description, sketch, or diagram.)
- 2. (a) solve
 - (b) explain
 - (c) interpreted
 - (d) relating
- 3. (a) Algebraically
 - (b) Describe
 - (c) How
 - (d) Verify
 - (e) Contrast/Distinguish
 - (f) Determine

Student Worksheet

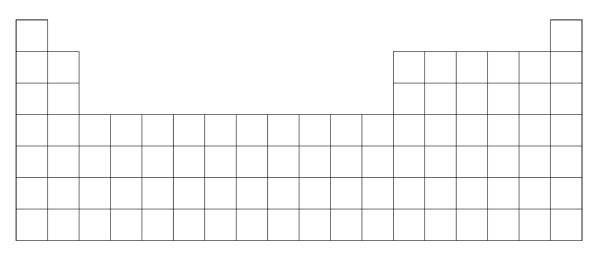

Classifying Knowledge, Extra Exercises

Complete the table below with the correct definitions.


Term	tions of Terms Definition	Examples/Notes
observation		
qualitative		
observation		
quantitative		
observation		
interpretation		
empirical knowledge		
KIIOwieuge		
theoretical		
knowledge		
lanomougo		
empirical		
hypothesis		
empirical		
definition		
generalization		
scientific law		

An Empirical Classification of Matter

Instructional Master


Complete the following concept map.

Make a Periodic Table, Extra Exercises

Follow the instructions to complete the blank periodic table below.

- 1. (a) Label the groups (at the top of each group) from 1 to 18 and in the Roman Numeral system (IA to VIIIA and IB to VIIIB).
 - (b) Label the periods at both sides of the table.
- 2. (a) Lightly shade the metals with a light colour.
 - (b) Lightly shade the nonmetals with another colour.
 - (c) Leave the metalloids unshaded.
- 3. Label the transition metals, lanthanides, actinides, alkali metals, alkaline-earth metals, halogens, and noble gases.
- 4. Outline the "staircase" with a thick black line and label it.
- 5. (a) Circle the elements that are liquid at SATP.
 - (b) Outline the elements with a thick black line that are gases at SATP.

ł							
L							

Answer the following questions:

- 1. Define the following terms: period; group or family.
- 2. What does the "staircase" indicate?
- 3. How many elements are solid at SATP? Liquids at SATP? Gases at SATP?

Student Worksheet

Periodic Table, Extra Exercises

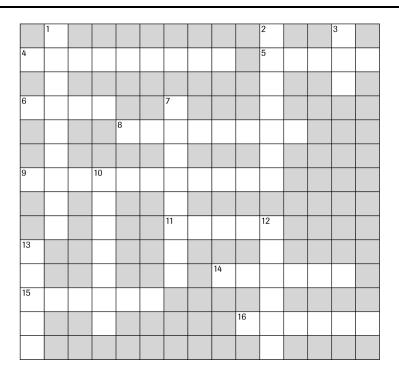
Use the periodic table on the inside front cover of your textbook to complete the following table **Table 1** Properties and Descriptions of Elements

Element name		Chemical symbol	Atomic number	Group number	Period number	Metal (m) or nonmetal (nm)	State at SATP	Family/Series names
1.	chlorine							
2.	magnesium							
3.			30					
4.		N						
5.				17	5			
6.			79					
7.					3			alkali metals
8.	thorium							
9.				12			liquid	
10.		Br						
11	argon							
12.				11	5			
13.			19					
14.	calcium							
15.				1			gas	
16.			58					

Student Worksheet

Bohr Diagrams and Energy Level Diagrams, Extra Exercises

Element name and symbol	Bohr diagram of atom	Energy level diagram of atom	# of valence electrons	Bohr diagram of ion	Energy level diagram of ion	lonic charge (if an ion forms)
lithium						
beryllium						
F						
magnesium						
AI						


Student Worksheet Ionic Compounds, Extra Exercises

1.	Write the formulas for the following compounds.(a) magnesium oxide	2.	Write the names for the following compounds. (a) Li ₂ O
	(b) sodium fluoride		(b) AlCl ₃
	(c) aluminium nitride		(c) MgS
	(d) potassium sulfide		(d) CaO
	(e) lithium iodide		(e) KBr
	(f) calcium bromide		(f) BeF
	(g) beryllium oxide		(g) Na ₃ N
	(h) nickel chloride		(h) Al ₂ O ₃
	(i) magnesium nitride		(i) CuCl ₂
	(j) aluminium sulfide		(j) FeBr ₃
	(k) copper(I) bromide		(k) PbS
	(l) tin(II) iodide		(l) SnO ₂
	(m) iron(III) chloride		(m) Na ₂ S
	(n) calcium phosphide		(n) Mg ₃ P ₂
	(o) lead(II) oxide		(o) NiO
	(p) lead(IV) fluoride		(p) CuI
	(q) tin(IV) bromide		(q) PbCl ₄
	(r) copper(II) sulfide		(r) FeP
	(s) iron(II) oxide		(s) CaF ₂
	(t) calcium nitride		(t) K ₃ P

Molecular Compounds, Extra Exercises

1.	Write the formulas for the following compounds.	2.	Write the names for the following compounds.
	(a) carbon dioxide		(a) CF ₄
	(b) silicon dioxide		(b) NH ₃
	(c) water		(c) PBr ₃
	(d) carbon disulfide		(d) O ₃
	(e) sulfur trioxide		(e) F ₂ (g)
	(f) ammonia		(f) CS ₂
	(g) carbon tetrachloride		(g) N ₂ O ₄
	(h) hydrogen peroxide		(h) H ₂ O ₂
	(i) methane		(i) CO
	(j) ozone		(j) SiC
	(k) diphosphorus trioxide		(k) P ₂ O ₅
	(l) nitrogen monoxide		(l) CH ₄
	(m) chlorine dioxide		(m) SO ₃
	(n) dinitrogen oxide		(n) H ₂ O
	(o) carbon monoxide		(o) SiO ₂
	(p) arsenic tribromide		(p) PCl ₅
	(q) phosphorus pentabromide		(q) I ₂ (g)
	(r) dinitrogen tetroxide		(r) NO ₂
	(s) silicon carbide		(s) SF ₄
	(t) sulfur dioxide		(t) H ₂ (g)

Crossword on Elements, Compounds, and the Periodic Table, Extra Exercises

Across

- 3. is a vital ion in the human body.
- 5. An example of an element that has a stable electron arrangement is
- 6. The overall charge on an ionic compound is _____.
- 8. The Group 17 elements are called
- 9. A(n) ______ is a solution that conducts electricity.
- 11. Compounds that are made up of positive and negative ions are called .
- 14. _____ are shiny, malleable conductors of electricity.
- 15. Chemical families or ______ are elements located in the same vertical column.
- 16. is an example of an alkali metal.

Down

- 1. _____ compounds are formed when nonmetals combine with other nonmetals.
- 2. Electrons in the outer shell of an atom are called ______ electrons.
- 3. A charged atom is called a(n)
- 3. A charged atom is called a(n) _____.
 7. When a fluorine atom gains an electron, it forms a(n) _____ ion.
- 10. is an example of an alkaline-earth metal.
- 12. A(n) ______ is a positively charged ion.
 13. ______ is an example of a nonelectrolyte when it is dissolved in water.

Chapter 1 Checklist

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding. Key Terms

Knowledge

classify matter as pure and mixtures as homogeneous and heterogeneous (1.2)	
interpret the periodic table of the elements (1.3)	
use atomic theory to explain the periodic table (1.4)	
classify elements and compounds, and know the properties of each class (1.3, 1.4)	
explain and predict chemical formulas for and name ionic and molecular compounds, acids, and bases (1.5, 1.6)	
identify the state of matter of substances (1.5, 1.6)	
write chemical equations when given reactants and products (1.5, 1.6)	
classify scientific knowledge as qualitative and quantitative, as observations and interpretations, and as empirical and theoretical (1.1)	

STS

describe the natures of science and technology (1.1)	
describe the application of some common chemicals (1.3, 1.5, 1.6)	

Skills

use a textbook, a periodic table, and other references efficiently and effectively (1.1–1.6)	
interpret and write laboratory reports (1.1, 1.2, 1.3, 1.4, 1.6)	
select and use diagnostic tests (1.2, 1.3, 1.4, 1.5, 1.6)	

1.1	science	
	technology	
	chemistry	
	observation	
	interpretation	
	empirical knowledge	
	theoretical knowledge	
	empirical hypothesis	
	empirical definition	
	generalization	
	scientific law	
	law of conservation of mass	
1.2	matter	
	pure substance	
	mixture	
	heterogeneous mixture	
	homogeneous mixture	
	element	
	entity	
	atom	
	compound	
	chemical formula	
1.3	periodic law	
	family	
	group	
	period	
	semi-metal	
	standard ambient temperature and pressure (SATP)	
	metal	
	nonmetal	
	alkali metal	
	alkaline-earth metal	
	halogen	
	noble gas	
	main group element	
	transition element	

LSM 1.CS (cont'd)

1.4	theoretical hypothesis
	theoretical definition
	theory
	mass number
	atomic number
	ion
	monatomic ion
	cation
	anion
1.5	ionic compound
	molecular compound
	acid
	base
	neutral
	aqueous solution
	polyatomic ion
	formula unit
	empirical formula
	hydrate
1.6	molecule
	molecular formula
	diatomic molecule

Student Worksheet Solutions LSM 2.2D Solutions for Writing Chemical Formulas, Extra Exercises

1. (a) Ca = 1 atom of calcium

- (b) $N_2 = 2$ atoms of nitrogen in the molecule
- (c) Ba₃(PO₄)₂ = 1 molecule of barium phosphate, which includes 3 atoms of barium 2 atoms of phosphorus 8 atoms of oxygen Total number of atoms = 13
 (d) 2 H₂O = 2 molecules of water, which includes 4 atoms of backup and a start of the data at a start of the dat at a start of the data at a start
 - 4 atoms of hydrogen 2 atoms of oxygen
 - 2 atoms of oxygen
 - Total number of atoms = 6
- (e) 3 FeSO₄ = 3 molecules of iron(II) sulfate, which includes 3 atoms of iron
 3 atoms of sulfur
 12 atoms of oxygen
 Total number of atoms = 18
- (f) 4 Cu(NO₃)₂ = 4 molecules of copper(II) nitrate, which includes 4 atoms of copper 8 atoms of nitrogen 24 atoms of oxygen Total number of atoms = 36
- 2. (a) K₂CrO₄

Type of atom	# of atoms
potassium	2
chromium	1
oxygen	4
Total	7

(b) 2 (NH₄)₂Cr₂O₇

Type of atom	# of atoms
nitrogen	4
hydrogen	16
chromium	4
oxygen	14
Total	38

- Step 1: Write the chemical formula for each reactant and product, including the state of matter for each one.
- Step 2: Try balancing the atom or ion present in the greatest number. Find the lowest common multiple to obtain coefficients to balance this particular atom or ion.
- Step 3: Repeat step 2 to balance each of the remaining atoms and ions.
- Step 4: Check the final reaction equation to ensure that all atoms and ions are balanced.

Student Worksheet

Molar Mass and Conversions, Extra Exercises

- Determine the molar mass of each of the following substances:
 (a) MgI₂(s)
 (b) Al(OH)₃(s)
 - (c) $(NH_4)_2CO_3(s)$ (d) $CoCl_2 \bullet 6H_2O(s)$
- Convert each of the following masses into its chemical amount:
 (a) 8.40 g of NaOH(s)
 - (b) $4.2 \text{ kg of H}_2O(l)$
- Convert each of the following amounts into a mass in grams of the given substance:
 (a) 0.456 mol of Al₂(SO₄)₃(s)
 - (b) 0.518 mmol of $CuSO_4 \bullet 5H_2O(s)$
- 4. Complete the following table.

Table 1 Molar Calculations

Substance	Molar mass (g/mol)	Mass (g)	Chemical amount (mol)
CaCl ₂ (s)		18.6	
Al ₂ O ₃ (s)			0.267
Mg(OH) ₂ (s)		35.00	
Na ₂ CO ₃ •10H ₂ O(s)			0.150

Table 1 Chemical Reactions

Reaction type	Generalization
formation	elements \rightarrow compound
simple decomposition	compound \rightarrow elements
complete combustion	substance + oxygen \rightarrow most common oxides
single replacement	element + compound \rightarrow element + compound (metal + compound \rightarrow metal + compound nonmetal + compound \rightarrow nonmetal + compound)
double replacement	compound + compound \rightarrow compound + compound

Instructional Master Solubility of Ionic Compounds

	Br_						CIO,	Group 1 NH ⁺
lon		S^{2-}	HO	${\rm SO}_4^{\ 2^-}$	S03 ²⁻	CH ₃ COO ⁻	CIO ⁴	H ₃ 0 ⁺ (H ⁺)
Very	most	Group 1,	Group 1,	most	Group 1,	most	all	all
soluble (aq)		$NH_4^+,$	$NH_4^+, Sr^{2+},$		NH_4^+			
≥ 0.1 mol/L		Group 2	Ва ²⁺ , ТI ⁺					
Slightly	Ag^+ , Pb^{2+} ,	most	most	Ag^+ , Pb^{2+} ,	most	Ag ⁺ ,	none	none
soluble (s)	$TI^{+}, Hg_{2}^{2+},$			$Ca^{2+}, Ba^{2+},$		Hg_2^{2+}		
< 0.1 mol/L	Cu^+			Sr ²⁺ , Ra ²⁺				
(at SATP)								
*Although these an	e particularly reliable	*Although these are particularly reliable, all generalizations have exceptions. This textbook specifically identifies any reference to an ionic compound solubility that is	have exceptions. Th	nis textbook specific:	ally identifies any re	ference to an ionic o	compound solubility	/ that is
an exception to th	an exception to these generalizations.							

SOLUBILITY OF IONIC COMPOUNDS AT SATP-GENERALIZATIONS*

Classifying Chemical Reactions, Extra Exercises

- 1. (a) Classify each of the following reactions as formation, simple decomposition, single replacement, or double replacement reactions.
 - (b) Balance each equation and add symbols to indicate states of matter for all reactants and products.

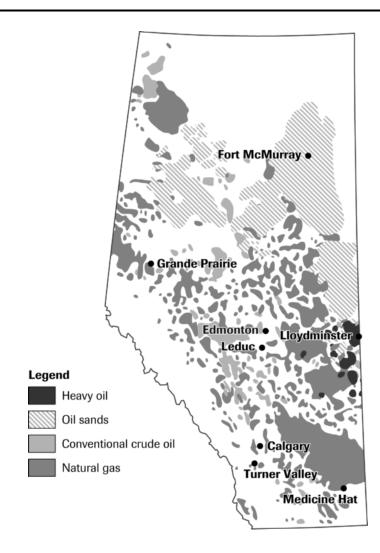
(i)	Cu	+	O_2	\rightarrow	CuO			
(ii)	Al	+	Fe ₂ O ₃	\rightarrow	Al ₂ O ₃	+	Fe	
(iii)	Ag	+	S	\rightarrow	Ag ₂ S			
(iv)	H ₂ O	+	electricity	\rightarrow	H_2	+	O_2	
(v)	FeS	+	HCl	\rightarrow	FeCl ₂	+	H_2S	
(vi)	NaCl			\rightarrow	Na	+	Cl ₂	
(vii)	NaOH	+	HCl	\rightarrow	H ₂ O	+	NaCl	
(viii)	Zn	+	HCl	\rightarrow	ZnCl ₂	+	H_2	

- 2. Write balanced chemical equations for the following: () The last of the following:
 - (a) The decomposition reaction of hydrogen sulfide.
 - (b) The single displacement reaction of copper metal and silver nitrate.
 - (c) The synthesis reaction of sodium and fluorine.
 - (d) The double displacement reaction of aluminium sulfate and calcium hydroxide.

Student WorksheetLSM 2.6DPredicting Chemical Reactions, Extra Exercises

For each of the following questions, classify the reaction type (formation, simple decomposition, combustion, single replacement, double replacement, or other), and predict the balanced chemical equation. Provide a word equation as well.

1. Al(s) + $O_2(g) \rightarrow$


- 2. $Ag_2O(s) \rightarrow$
- 3. $Br_2(l) + KI(aq) \rightarrow$
- 4. A strip of zinc metal is placed into a copper(II) nitrate solution.
- 5. $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow$
- 6. Sulfuric acid is neutralized by aqueous sodium hydroxide.

7. $\rightarrow CuS(s) + NaCH_3COO(aq)$

- 8. $CuS(s) + O_2(g) \rightarrow$
- 9. Propane burns in air.
- 10. $Na_2CO_3(aq) + HCl(aq) \rightarrow NaCl(aq) + CO_2(g) + H_2O(l)$

Fossil Fuel Industries in Alberta

Instructional Master

Examples of Hydrocarbons, Alkanes, and **Related Alkyl Groups**

Table 1 Examp	oles of Hydroca	arbons		
Hydrocarbon group	Example	Formula	Spacefill diagram	Bond and angles diagram
Aliphatic				
alkane	ethane	CH ₃ CH ₃	0	- > - \overline
	cyclohexane	C ₆ H ₁₂	H.	
alkene	ethene	CH ₂ CH ₂		120°
alkyne	ethyne	CHCH		°- 0- 0-°
Aromatic				
	benzene	C ₆ H ₆	3	

Table 3 The Alkane Family of **Organic Compounds**

- 0	
IUPAC Name	Formula
meth ane	CH ₄ (g)
eth ane	$C_2H_6(g)$
prop ane	C ₃ H ₈ (g)
but ane	C ₄ H ₁₀ (g)
pentane	C ₅ H ₁₂ (1)
hex ane	C ₆ H ₁₄ (1)
heptane	C ₇ H ₁₆ (1)
oct ane	C ₈ H ₁₈ (1)
nonane	C ₉ H ₂₀ (1)
dec ane	C ₁₀ H ₂₂ (1)
-ane	$C_n H_{2n+2}$

Table 4 Examples of Alkyl Branches

Branch	Name
-CH3	methyl
$-C_2H_5$ ($-CH_2CH_3$)	ethyl
$-C_3H_7$ ($-CH_2CH_2CH_3$)	propyl

Naming and Drawing Branched Alkanes

SUMMARY Naming Branched Alkanes

- Step 1: Identify the longest continuous chain of carbon atoms—the parent chain—in the structural formula. Number the carbon atoms, starting from the end closest to the branch(es), so that the numbers are the lowest possible.
- Step 2: Identify any branches and their location number on the parent chain.
- Step 3: Write the complete IUPAC name, following this format: (number of location) – (branch name)(parent chain).

Drawing Branched Alkane Structural Formulas

- Step 1: Draw a straight chain containing the number of carbon atoms represented by the name of the parent chain, and number the carbon atoms from left to right.
- Step 2: Attach all branches to their numbered locations on the parent chain.
- Step 3: Add enough hydrogen atoms to show that each carbon has four single bonds.

Learning Tip

Be careful when choosing the longest continuous chain (parent chain) because the structure may twist and turn. If your name ends up with an alkyl branch on the number 1 position, then you have made a mistake in identifying the parent chain. For example, 1,1-dimethylpropane is incorrect and should be 2-methylbutane.

Learning Tip

When naming hydrocarbons, not only must the branches be put in alphabetical order but also the set of numbers must be the lowest set. The lowest set of numbers is defined by IUPAC as being the set that starts with the lowest number; e.g., 2, 4 and 5 are lower than 3, 3 and 4. Start numbering the longest continuous chain from the end of the molecule with the closest branch.

Student Worksheet

Naming Aliphatic and Aromatic Hydrocarbons, Extra Exercises

- For each of the following IUPAC names, draw a structural diagram.
 (a) methylpentane
 (b) propyne
 - (b) octane

(f) methylpropene

(c) 2,3,4-trimethylpentane (g) cyclohexane

(d) ethene

2. For each of the following structural diagrams, write the IUPAC name.

(a)
$$CH_3 - CH_2 - CH_2 - CH = CH_2$$

(c) $CH_3 - C = C - CH - CH_2 - CH_3$

(b)
$$CH_3 CH_3 CH_3 (d)$$

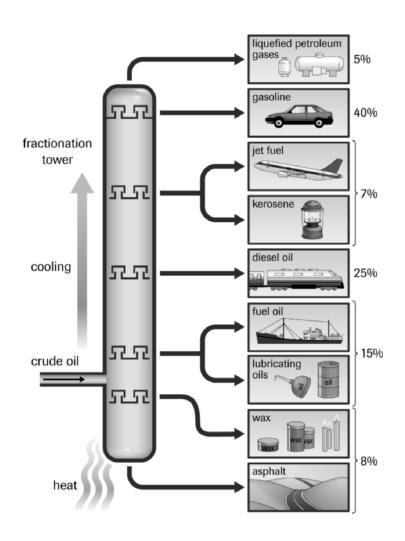
 $CH_3 - CH = C - C - CH_3 (d)$

Alkenes and Alkynes

SUMMARY

Alkenes and Alkynes

- Alkenes are hydrocarbons that contain at least one carbon–carbon double bond, usually $C_n H_{2n}$; e.g., propene, $C_3 H_6(g)$ or $CH_2 = CH - CH_3$.
- Alkynes are hydrocarbons that contain at least one carbon-carbon triple bond, usually $C_n H_{2n-2}$; e.g., propyne, $C_3 H_4(g)$ or $CH \equiv C - CH_3$.
- Alkenes and alkynes are unsaturated compounds that are easily converted to saturated (alkane) compounds by the addition of hydrogen (called hydrogenation). alkene/alkyne + $H_2(g) \rightarrow$ alkane
 - e.g., but-2-ene + hydrogen \rightarrow butane
 - $CH_3-CH=CH-CH_3+H-H \rightarrow CH_3-CH_2-CH_2-CH_3$
- Rules for Naming
 - 1. Number the longest chain containing the multiple bond from the end closer to the multiple bond.
 - 2. Identify the type and location of each branch.
 - 3. Write the IUPAC name using the format: (branch location)-(branch name)(prefix)-(multiple bond location)-(ene/yne); e.g., 4-methylpent-2-ene
- Alkenes are isomers of cycloalkanes and alkynes are isomers of cycloalkenes.
- The cracking of ethane to ethene is a very important chemical reaction in Alberta.


Instructional Master Naming Aromatic Hydrocarbons

SUMMARY Naming Aromatic Hydrocarbons

- 1. If an alkyl branch is attached to a benzene ring, the compound is named as an alkylbenzene. Alternatively, the benzene ring may be considered as a branch of a large molecule; in this case, the benzene ring is called a phenyl branch.
- 2. If more than one alkyl branch is attached to a benzene ring, the branches are numbered using the lowest numbers possible, starting with one of the branches. Given a choice between two sets of lowest numbers, choose the set that is in both numerical and alphabetical order. See Sample Problem 9.3.

You may encounter a naming system—known as the classical system—for benzene rings with two substituted groups. The 1,2-, 1,3-, and 1,4- arrangements are denoted by the prefixes ortho- (<i>o</i>), meta- (<i>m</i>), and para- (<i>p</i>), respectively. These names, such as <i>o</i> -dimethylbenzene, are still used in industry, and you may encounter them in other references.	Learning Tip
	system-known as the classical system-for benzene rings with two substituted groups. The 1,2-, 1,3-, and 1,4- arrangements are denoted by the prefixes ortho- (<i>o</i>), meta- (<i>m</i>), and para- (<i>p</i>), respectively. These names, such as <i>o</i> -dimethylbenzene, are still used in industry, and you may encounter them in other

Instructional Master Fractional Distillation

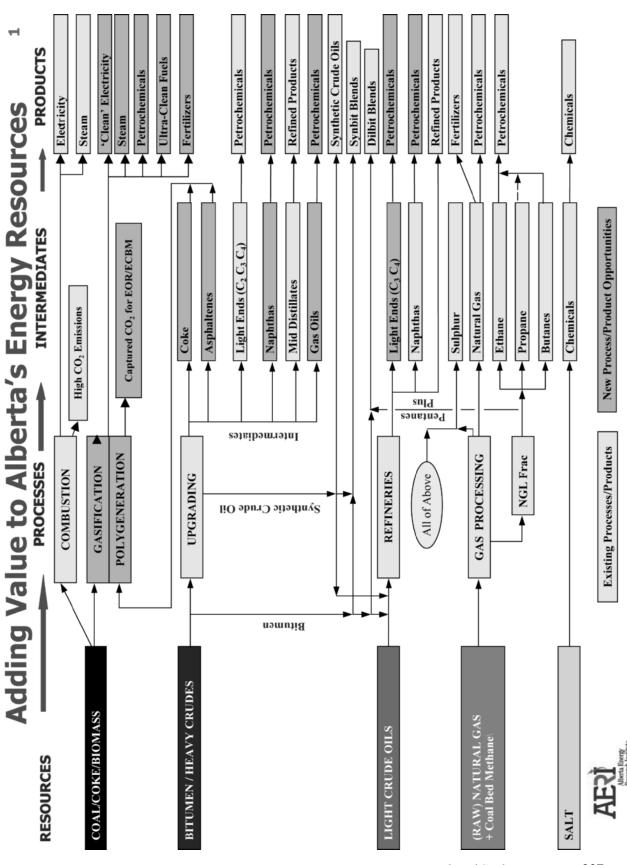
Figure 2

A fractional distillation (fractionation) tower contains trays positioned at various levels. Heated crude oil enters near the bottom of the tower. The bottom of the tower is kept hot, and the temperature gradually decreases toward the top of the tower. The concentration of components with lower boiling points increases from the bottom to the top of the tower.

The percentage distributions shown vary with the type of crude oil and with seasonal demands.

Instructional Master LSM 9.5C Crude Oil Refining

Figure 4

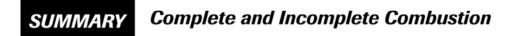

Only 5% of the original mass of crude oil is used as starting chemicals (called feedstock) in the manufacture of solvents, greases, plastics, synthetic fibres, and pharmaceuticals.

Gasoline and diesel fuel are high-demand crude oil fractions. More of each of these fractions can be made by cracking heavier fractions. Also, molecules that burn better in internal combustion motors can be made by chemical processes (e.g., catalytic reforming and alkylation) controlled by chemical engineers.

Catalytic cracking: larger molecules \rightarrow smaller molecules + carbon *Hydrocracking:* larger molecule + hydrogen \rightarrow smaller molecules *Catalytic reforming:* aliphatic molecule \rightarrow aromatic molecule + hydrogen *Alkylation (isomerization):* aliphatic molecule \rightarrow more branched isomer 5%

industries

Adding Value to Alberta's Energy Resources


Instructional Master

LSM 9.5D

Copyright © 2007 Thomson Nelson

Unit 5 Lab and Study Masters **307**

Instructional Master LSM 9.6B Complete and Incomplete Combustion

Complete Combustion

hydrocarbon + (excess) $O_2(g) \rightarrow CO_2(g) + H_2O(g)$

Incomplete Combustion

hydrocarbon + (insufficient) $O_2(g) \rightarrow xC(s) + \gamma CO(g) + zCO_2(g) + H_2O(g)$ (The ratio of *x*:*y*:*z* largely depends on the proportion of oxygen available.) Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

	-
define organic compounds, recognizing	
inorganic exceptions (9.1)	
identify and describe organic	
compounds in everyday life, as	
well as their origins and	
applications (all sections)	
name and draw structures for	
saturated and unsaturated aliphatic	
and aromatic hydrocarbons (9.2 to	
9.6)	
classify organic compounds from	
their structural formulas (9.2 to 9.5)	
define and use the concept of	
structural isomerism and relate to	
properties of isomers (9.2 to 9.4)	
compare boiling points and	
solubility of organic compounds	
(9.2 to 9.4)	
describe fractional distillation and	
solvent extraction (9.1, 9.2, 9.3,	
9.5)	
define, provide examples of,	
predict products, and write and	
interpret balanced equations for	
combustion reactions (9.1, 9.2, 9.5,	
9.6)	
describe major reactions for	
producing energy and	
economically important	
compounds from fossil fuels (all	
sections)	

STS

illustrate how science and	
technology are developed to meet	
societal needs and expand human	
capabilities (all sections)	
describe interactions of science,	
technology, and society (all	
sections)	
illustrate how science and	
technology have both intended and	
unintended consequences (9.1,	
9.2, 9.5, 9.6)	

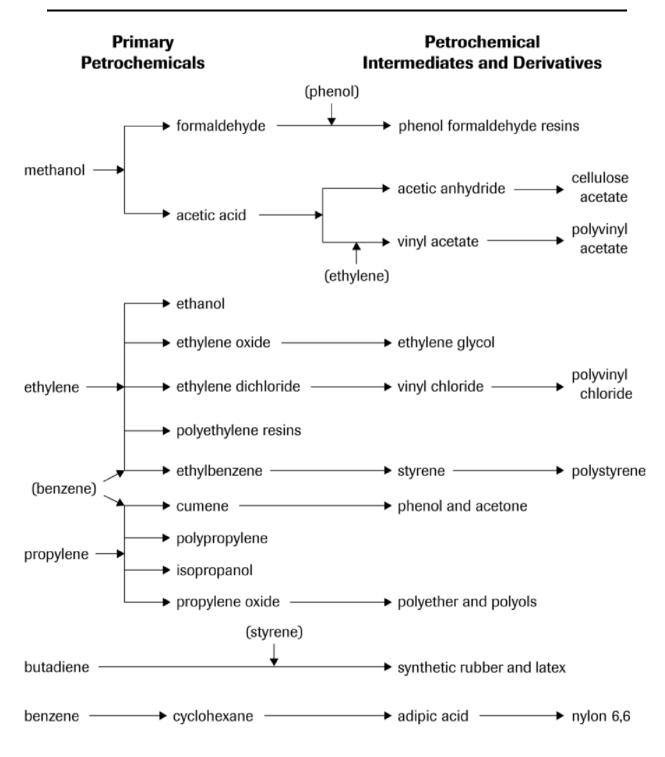
Skills

OKIIIS		
initiating and planning performing and	describe procedures for safe handling, storing, and disposal of materials used in the laboratory, with reference to WHMIS and consumer product labelling information (9.5) separate a mixture of organic compounds	
recording	based on boiling point differences (9.5) build molecular models depicting the structures of selected organic and inorganic compounds (9.3)	
analyzing and interpreting	follow IUPAC guidelines for naming and formulas and by compiling evidence to compare the properties of structural isomers (all sections) compile and organize data to compare the properties of structural isomers (9.3) investigate sources of	
	greenhouse gases, that is, methane, carbon dioxide, water, and dinitrogen oxide (nitrous oxide) and the issue of climate change (all sections)	
communica tion and teamwork	work cooperatively in addressing problems and apply skills and conventions of science in communicating information and ideas and in assessing results by preparing reports on topics related to organic chemistry (all sections)	

Key Terms

9.1	organic chemistry
	hydrocarbon
	refining
9.2	alkane
	homologous series
	saturated hydrocarbon
	structural isomer
	alkyl branch
	cycloalkane
9.3	unsaturated compound
	hydrogenation
	alkene
	alkyne
	cycloalkene
	cracking
	aliphatic hydrocarbon
9.4	aromatic
	phenyl group
9.5	fractionation
	fraction
	solvent extraction
	hydrocracking
	catalytic reforming

Key STS


appreciate that Alberta is a source of a variety of fossil fuels (CS: Fossil Fuel Industries in Alberta; WA: CS—Coal in Alberta; Section 9.2; EI: Coalbed Methane: DYK: Ethane Extraction Plants: Section 9.3 Questions 14, 15; CS: The Athabasca Oil Sands: Chapter 9 Review Questions 39, 41) understand the importance of hydrocarbons as fuels and to produce useful products (Exploration: Burning Fossil Fuels; Section 9.1; WA: CS-Coal in Alberta: Section 9.2 Questions 1, 4, 9, 10, 11; Section 9.4 Question 4; Section 9.5; CC: The Petroleum Industry; CS: Octane Number; Section 9.5 Questions 9, 10, 13; Section 9.6) recognize the physical and chemical processes involved in refining natural gas, crude oil, and oil sands (Section 9.1; Section 9.2; EI: Coalbed Methane: Section 9.3; Section 9.5; Investigation 9.3; WA: CA—Karl Chuang; CS: Octane Number; Investigation 9.4;

Investigation 9.5; CS: The	
Athabasca Oil Sands)	
compare hydrocracking and catalytic	
reforming (Section 9.5)	
understand the role of science and	
technology in improving the quality	
of gasoline by improving the octane	
rating, reducing pollutants, and	
adding oxygenators (Section 9.2	
Table 2; Section 9.5; CS: Octane	
Number; Section 9.5 Questions 9,	
13; Section 9.6; DYK: Ethanol in	
Gasoline; Section 9.6 Question 2)	
consider the appropriate use and	
environmental effects of fossil fuel	
extraction (Exploration: Burning	
Fossil Fuels; CS: Fossil Fuel	
Industries in Alberta; WA: CS—Coal	
in Alberta; EI: Coalbed Methane;	
CS: The Athabasca Oil Sands;	
Section 9.5 Question 10; Chapter 9	
Review questions 38, 39, 41, 44)	
explore various careers associated	
with the petroleum industry (CC:	
Petroleum Engineer; CC: The	
Petroleum Industry)	

Key Skills

distinguish types of organic compounds from given structural formulas (all sections)	
separate hydrocarbons by distillation (<i>Investigation 9.3</i>)	
compare properties of organic compounds (Investigations 9.1; Section 9.2 Question 10; Investigation 9.2; Lab Exercise 9.A; Lab Exercise 9.B; Investigation 9.3)	
use IUPAC organic nomenclature (all sections)	

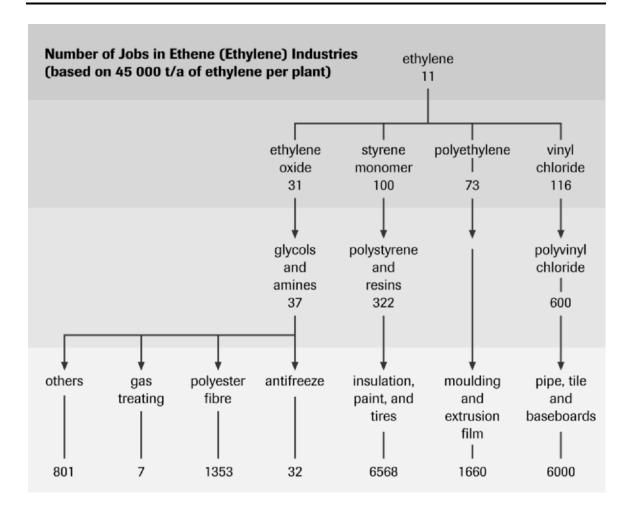

Petrochemicals and Their Derivatives

Figure 2

This figure, provided by industry, communicates primary petrochemicals, intermediates, and derivatives. You do not have to memorize this figure, or the common industrial names (except acetic acid, ethylene, and propylene).

The Ethylene Industry

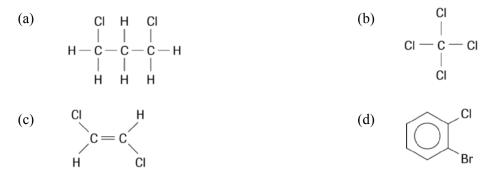


Figure 3

Number of jobs in ethene industries, based on 45 000 t/a of ethene per plant. This is called a multiplier effect. For every 11 jobs in the ethene plant, there are thousands of jobs created elsewhere.

Student WorksheetLSM 10.2AIdentification and Naming of Organic Halides,
Extra Exercises

- 1. In the following questions, the IUPAC names of a variety of organic compounds are provided. Draw a structural diagram for each compound.
 - (a) 2-bromopentane
 - (b) 1,4-dichlorobenzene
 - (c) 1,1-dichloro-2,2-difluoroethane
 - (d) 1,3,5-trichlorohexane
 - (e) 1-fluorobut-2-ene
 - (f) 1-chloro-3-fluorocyclopentane
- 2. Give the IUPAC name for the following organic compound represented by the given structural formula.

Student Worksheet

Reactions of Hydrocarbons, Extra Exercises

- 1. Write an equation for each of the following reactions. Use molecular or structural formulas and classify the reaction as combustion, addition, substitution, hydrogenation, alogenation, hydration, or hydrohalogenation.
 - (a) Octane burns with oxygen gas.
 - (b) 2-methylpent-1-ene reacts with hydrogen.
 - (c) Ethyne and excess oxygen react.
 - (d) 3-methylbut-1-yne reacts with excess hydrogen.
 - (e) Chlorine reacts with ethane.
 - (f) Water and ethane are placed in concentrated sulfuric acid with a catalyst.
 - (g) Bromine combines with benzene.
 - (h) Propene and HBr combine.
 - (i) Cyclohexene reacts with hydrogen gas.
 - (j) Acetylene reacts with excess hydrogen.

SUMMARY Organic Halides

Properties

Organic halides

- may be polar or nonpolar molecules or may have a relatively nonpolar (hydrocarbon) end and a polar (halide) end
- have higher boiling points than similar hydrocarbons
- have very low solubility in water but higher solubility (especially for small molecules) than similar hydrocarbons
- are typically good solvents for organic materials such as fats, oils, waxes, gums, resins, and/or rubber

Preparation

- Addition reactions with halogens or hydrogen halides alkenes and alkynes → organic halides
 e.g., CH₂ == CH₂ + Cl₂ → CH₂Cl = CH₂Cl
- · Substitution reactions with halogens

alkanes and aromatics $\xrightarrow{\text{light}}$ organic halides

e.g., $CH_3 - CH_2Cl + Cl_2 \xrightarrow{\text{light}} CH_2Cl - CH_2Cl + H - Cl$

Student Worksheet LSM 10.2F Organic Reactions, Extra Exercises

For each of the following questions, state the organic reaction type, draw condensed structural diagrams for all reactants and products, and name all products. (You do not need to balance the equations.)

- 1. Propane reacts with fluorine
- 2. Chloroethane reacts with hydroxide ions
- 3. Ethanol, CH₃CH₂OH, burns in an automobile engine.
- 4. Chloromethane is produced by reacting methane and chlorine.
- 5. Bromine and ethene react to form an organic halide.
- 6. Hydrogen chloride and ethene react to produce an organic halide.

Student Worksheet

Applications of Organic Reactions, Extra Exercises

1. Research examples of the use of organic chemistry to address health, safety, or environmental problems, and write a report or present one such case study. Examples of topics include leaded and unleaded gasoline, solvents in dry cleaning, aerosol propellants, and pesticides and fertilizers.

www.science.nelson.com	G0 ()
------------------------	---------------

2. Why was mustard gas such an effective weapon, both during the First World War and more recently? Research its properties and effects, and defences developed against it.

www.science.nelson.com	GO ()
------------------------	--------------

- 3. Long-term replacements for CFCs and HCFCs include hydrofluorocarbons (HFCs), which have no chlorine atoms. HFCs are now being used in refrigerators, automobile air conditioners, aerosol cans, and as foaming agents.
 - (a) Research the latest information on HFCs and on alternative chemicals or technologies that are being used in refrigerators and air conditioners. Present your findings in a brief report.
 - (b) Name, and draw structural formulas for two chlorine-free organic halides that could potentially be used in place of CFCs and HCFCs.

www.science.nelson.com

Alcohols and Elimination Reactions

SUMMARY Alcohols and Elimination Reactions

Alcohols

Functional group:

-OH, hydroxyl group

Naming alcohols:

- Drop the "e" from the alkane name and add "ol"; e.g., ethane becomes ethanol.
- If necessary, add a number (or numbers) to communicate where the hydroxyl group(s) is (are) located; e.g., propan-1-ol and propan-2-ol.
- If the alcohol has two or three hydroxyl groups, it is a diol or a triol, respectively; e.g., ethane-1,2-diol and propane-1,2,3-triol. For diols and triols, do not drop the "e" from the alkane name.

Preparation:

Addition reactions with water

• alkenes + water \rightarrow alcohols

$$\begin{array}{ccc} H & H & H & H & H \\ | & | & \\ R - C = C - R' + H - O & \longrightarrow & R - C - C - R' \\ | & | & H & H & OH \end{array}$$

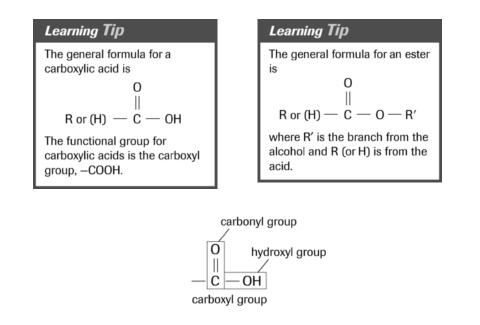
(R and R' can be the same or different alkyl groups. Isomers often result.)

Elimination Reactions

• alcohols \rightarrow alkenes + water

$$\begin{array}{ccc} H & H & H & H & H \\ R - C - C - C - R' \xrightarrow{catalyst} & R - C = C - R' + O - H \\ I & I \\ H & OH & H \end{array}$$

• organic halides + $OH^- \rightarrow alkenes + halide ion + water$


$$\begin{array}{ccccc} H & H & H & H & H \\ | & | & | \\ R - C - C - C - R' + OH^{-} \rightarrow & R - C = C - R' + X^{-} + O - H \\ | & | \\ H & X & H \end{array}$$

Student Worksheet LSN Alcohols and Elimination Reactions, Extra Exercises

- 1. Draw a structural diagram for each compound named.
- (a) butan-1-ol (d) pentan-2-ol
- (b) 2-methylpropan-2-ol (e) cyclohexane-1,4-diol
- (c) 1,2-dimethylbutan-2-ol
- 2. For each of the following questions, draw condensed structural diagrams for all reactants and products, and name all products. (You do not need to balance the equations.)
 - (a) Butan-1-ol reacts in the presence of concentrated sulfuric acid.
 - (b) A 5-carbon alkene is formed when a secondary alcohol undergoes an elimination reaction.
 - (c) In the presence of a strong base, 2-chlorobutane forms releases water and another small entity as it is transformed to an unsaturated compound.
- 3. Considering the technological difficulties and the economic cost of producing ethene, which of the following solutions would you choose? Justify your selection:
 - burn and/or export the natural gas without removing the ethane
 - remove the ethane and export it separately in a special pipeline
 - crack the ethane to ethene and export it by pipeline
 - use the ethene in Alberta to produce tertiary products, such as plastics

www.science.nelson.com

Condensation Reactions of Carboxylic Acids to Form Esters

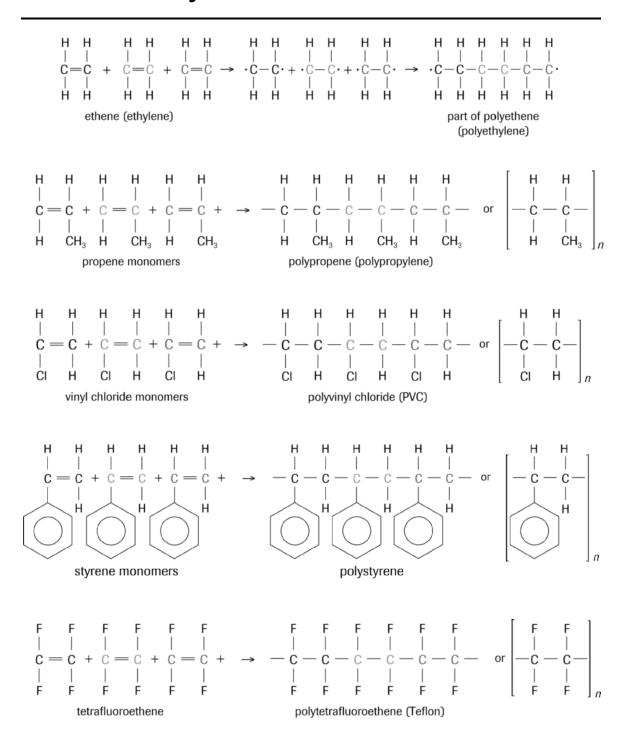
Carboxylic Acids, Esters, and Esterification

Functional groups

• carboxylic acid: -COOH carboxyl group

• ester: -COO- alkylated carboxyl group

Esterification reaction


carboxylic acid + alcohol \rightarrow ester + water

$$\begin{array}{c} O & H \\ \parallel \\ R - C - OH + R' - OH \xrightarrow{\text{conc. } H_2SO_4} & O & H \\ \xrightarrow{\text{heat}} R - C - O - R' + H - O \\ \text{carboxylic acid alcohol} & \text{ester water} \end{array}$$

(For esterification, R can be replaced by an H, but R' cannot be replaced by an H.)

e.g., $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH + CH_3 - OH \longrightarrow CH_3 - CH_2 - CH_2 - CH_3 + H - O - H$ butanoic acid + methanol \longrightarrow methyl butanoate + water

Polymer Addition Reactions

Instructional Master LSM 10.5B Fats and Oils Н 0 Н 0 - C $\mathbf{H}\mathbf{0} - \mathbf{C} - \mathbf{C}$ (carbon chain) H - C - O(carbon chain) Н−С−ОН 0 -Ŭ 3 H₂O 0 (carbon chain) H - C - OH-C-OH HO-C-- (carbon chain) 0 C — (carbon chain)

enzyme

action

H - C - O

Н

triglyceride

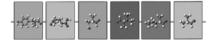
Triglycerides are formed by the union of glycerol and three fatty acids. Note the removal of water in the synthesis. The terms monoglyceride and diglyceride are used to describe the joining of glycerol with one or two fatty acids, respectively.

H - C - OH

H

glycerol

0


 $\mathbf{H}\mathbf{O} - \mathbf{C}^{\parallel}$ — (carbon chain)

three fatty acids

Instructional Master Four Levels of Proteins

Primary structure, 1º

The sequence of amino acids in the polypeptide chain determines which protein is created.

Secondary structure, 2°

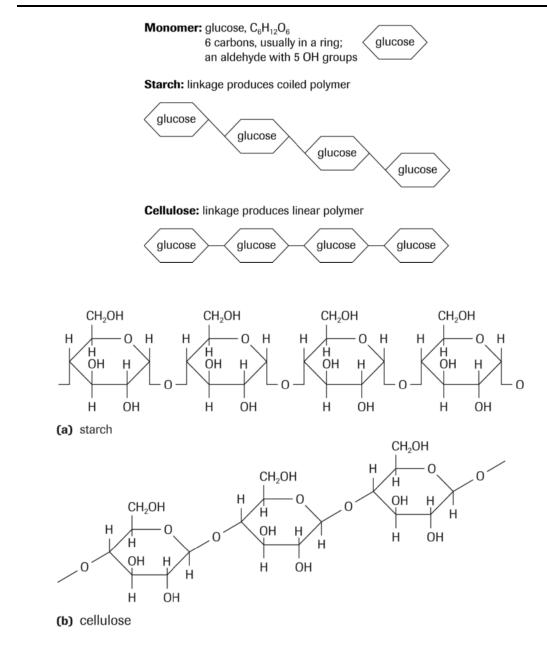
Polar and nonpolar amino acids at different locations within the long polypeptide chain interact with each other, forming coils or pleated sheets. The interactions may be van der Waals forces, hydrogen bonding, or other attractions.

Alpha-helix This coiled secondary structure results from hydrogen bonds between the amine group in a peptide linkage and the carbonyl group of an amino acid further along on the same chain. The R groups of the amino acids protrude outward from the coil.

Pleated-sheet (or beta-pleated sheet) This folded secondary structure results from the zigzag shape of the backbone of the polypeptide chain forming a series of pleated sheets. Hydrogen bonds form between the amine groups and the carbonyl groups on adjacent pleated sheets.

Tertiary structure, 3º

Proteins may have helical sections and pleated-sheet sections within the same molecule. These sections attract each other, within the molecule, folding a long, twisted ribbon into a specific shape. Proteins such as enzymes, hemoglobin, and hormones tend to have a spherical or globular tertiary structure, to travel easily through narrow vessels.



Quaternary structure, 4° Some proteins are complexes formed from two or more protein subunits, joined by van der Waals forces and hydrogen bonding between protein subunits. For example, hemoglobin has four subunits held together roughly tetrahedral arrangement.

Proteins are very complicated compounds, with up to four levels of organization giving each protein a unique physical shape with unique physical characteristics.

Carbohydrates—Starch and Cellulose

Figure 11

The difference in linkages between glucose monomers gives very different three-dimensional structures.

- (a) In starch, the polymer takes on a tightly coiled helical structure.
- (b) In cellulose, the linked monomers can rotate, allowing formation of straight fibres.

Polymers Plastics, Fibres, and Food

SUMMARY Polymers—Plastics, Fibres, and Food

Polymers are a common part our everyday world and include natural polymers (lipids (triesters), proteins, and carbohydrates) and synthetic polymers (e.g., nylon, cellulose acetate, and polyesters). For the structural formula equations of these polymers, see previous pages.

Addition Polymers

Synthetic Addition Polymer (e.g., polypropene)

Н Н		[Н	н]
C = C	\rightarrow	— C-	- C
H CH	ł ₃	Н	$CH_3 \mid_n$

Condensation Polymers (Structural Analogs)

Polyesters

- Natural "Polyester" (e.g., butter): glycerol + fatty acid \rightarrow fat or oil + water e.g., $C_3H_5(OH)_3 + 3 C_{17}H_{35}COOH \rightarrow C_3H_5(OOCC_{17}H_{35})_3 + 3 H_2O$
- Synthetic Polyester (e.g., Dacron) dicarboxylic acid + polyalcohol \rightarrow polyester + water e.g., HOOC — C₆H₄ — COOH + HO — CH₂ — CH₂ — OH \rightarrow [-OOC — C₆H₄ — COO — CH₂ — CH₂-]_n + n H₂O

Polyamides

- Natural (proteins; polypeptides): amino acid + amino acid + ... → protein + water e.g., H₂N — CH₂ — COOH + H₂N — CHCH₃ — COOH → [-NH — CH₂ — CONH — CHCH₃ — CO-]_n + n H₂O
- Synthetic (e.g., nylon 6,6): dicarboxylic acid + di-amine \rightarrow nylon + water e.g., HOOC — $(CH_2)_4$ — COOH + H_2N — $(CH_2)_6$ — $NH_2 \rightarrow$ [— OC — $(CH_2)_4$ — CONH — $(CH_2)_6$ — NH_{-1}_n + $n H_2O$

Polysaccharides

- Natural (e.g., starch): glucose + glucose → starch + water glucose + glucose → cellulose + water (The glucose molecules that polymerize to produce starch or cellulose have slightly different stereochemical formulas.) C₆H₁₂O₆ + C₆H₁₂O₆ → [-C₆H₁₀O₅-]_n + n H₂O
- Synthetic (e.g., cellulose triacetate): cellulose + acetic acid + acetic anhydride \rightarrow cellulose acetate + ... $[-C_6H_{10}O_5-]_n + CH_3COOH + (CH_3CO)_2O \rightarrow [-C_6H_7O_5(OCH_3)_3-]_n + ...$

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge	Skills	
identify and describe significant organic compounds in daily life, demonstrating generalized knowledge of their origins and applications (all sections)	initiating and planning	predict the ester formed from an alcohol and an organic acid (10.4)
name and draw structural, condensed structural and line diagrams and formulas for organic halides, alcohols, carboxylic acids, and esters (all sections)		describe procedures for safe handling, storing and
identify types of compounds from their functional groups, given the structural formula and name the functional groups (10.2, 10.3, 10.4)		disposal of materials used in the laboratory, with reference to labelling
compare, both within a homologous series and between compounds with different functional groups, the boiling points and solubility of examples of alcohols and carboxylic acids (10.3, 10.4)		information (10.2, 10.3, 10.4, 10.5) design an experiment to compare the
define, illustrate, and provide examples of simple addition, substitution, elimination, and esterification (condensation) reactions (10.2, 10.3, 10.4, 10.5)	performing	properties of organic to inorganic compounds (10.4) build molecular models depicting
predict products and write and interpret balanced equations for the above reactions (10.2, 10.3, 10.4, 10.5)	recording	the structures of selected organic and inorganic
define, illustrate, and give examples of monomers, polymers, and polymerization in living and non-living systems (10.5)		compounds (10.4) perform an experiment to investigate the
relate the reactions described above to major reactions for producing economically important compounds from fossil fuels (all sections)		reactions of organic compounds (10.2, 10.3, 10.4, 10.5)
STS	analyzing and interpreting	follow appropriate IUPAC guidelines in writing the names and
illustrate how science and technology are developed to meet societal needs and expand human capabilities (all sections) describe interactions of science,		formulas of organic compounds (all sections)
illustrate how science and technology have both intended and unintended consequences (10.5)		compile and organize data to compare the properties of structural isomers

Copyright © 2007 Thomson Nelson

(10.3)

LSM 10.CS (cont'd)

Skills (cont'd)

	interpret results of a test to distinguish between a saturated and an unsaturated aliphatic using aqueous bromine solution (10.2)	
	use appropriate chemical symbols and nomenclature in writing organic chemical reactions (all sections)	
	use models to illustrate polymerization (10.5)	
communi- cation and teamwork	work cooperatively in addressing problems and apply the skills and conventions of science in communicating information and ideas and in assessing results (10.3, 10.4, 10.5)	

Key Terms

10.2	hydrocarbon derivative
	organic halide
	functional group
	addition reaction
	substitution reaction
10.3	alcohol
	hydroxyl group
	elimination reaction
10.4	carboxylic acid
	carboxyl group
	condensation reaction
	ester
	esterification reaction
	ester functional group
10.5	polymer
	monomer
	polymerization
	addition polymerization
	condensation
	polymerization
	polyester

polyamide	
polypeptide	

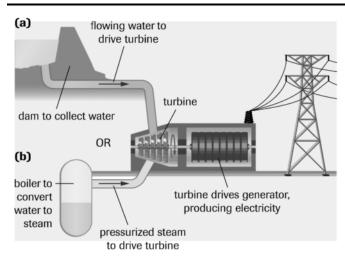
Key STS

name common organic compounds in familiar products (Section 10.3; Section 10.4; DYK: Water-Soluble Vitamins; Section 10.5; WA: WQ—Teflon: Healthy or Hazardous?; BC: Correlation versus Cause and Effect; EI: Natural or Artificial Polymers?; DYK: Cotton—A Natural Polymer)	
recognize petrochemical industry products and by-products (all sections)	
recognize the similarity between natural and synthetic polymers (BC: Natural Esters; Section 10.4 Questions 7, 9, 10, 13; Section 10.5; BC: Correlation versus Cause and Effect; EI: Natural or Artificial Polymers?; DYK: Cotton—A Natural Polymer; WA: CS—Cellulose Acetate)	
understand the reasons for the modification of gasoline (Section 10.3; DYK: Ethanol in Alberta; DYK: Fill Up with Methanol; WA: WQ— Cellulosic Ethanol; Section 10.3 Question 12; also see Chapter 9)	
weigh the positive and negative effects of various reactions involving organic compounds (Exploration: Burning Fossil Fuels; Section 10.1 Questions 1, 2; DYK: Ozone Depletion; Section 10.2 Questions 5, 8; Section 10.3; DYK: Ethanol in Alberta; DYK: Alcohol Poisoning; WA: CS—Cellulose Acetate; Section 10.3 Questions 12, 13; Section 10.4 Question 13; WA: WQ—Teflon: Healthy or Hazardous?; WA: CS—Recycling Plasics; DYK: Biodegradable Polymers; DYK: Aboriginal Technologies; EI: Natural or Artificial Polymers?; WA: CS—Cellulose Acetate; Section 10.5 Questions 4, 5, 6, 9, 13	
explore various careers associated with the petrochemical industry (CC: Chemical Engineer; CC: Chemical Employee)	

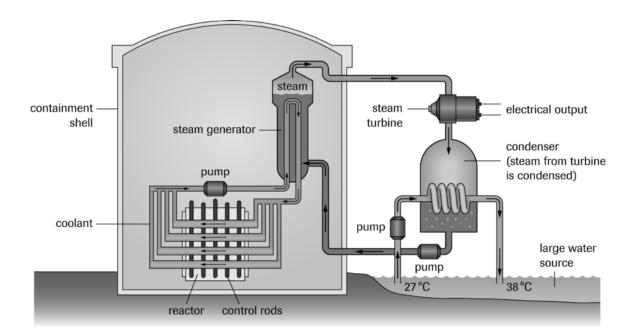
Key Skills

prepare and react organic compounds	
(Investigations 10.1, 10.2, 10.3, 10.5)	

Student Worksheet LSM 11.0A Thermal Energy Calculations, Extra Exercises


1. Calculate the quantity of heat required to warm 1.25 L of water from 22.0 °C to 98.0 °C in an electric kettle.

2. What mass of aluminum in a car engine will absorb 1.00 MJ of heat when the temperature rises from 22 °C to 102 °C after the car is started?

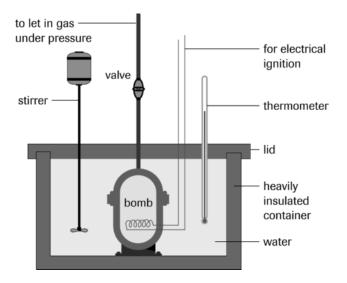

3. In a laboratory experiment, 2.00 kJ of heat flowed to a 100 g sample of a liquid solvent, causing a temperature increase from 15.40 °C to 21.37 °C. Calculate the specific heat capacity of the liquid.

4. A human body loses about 360 kJ of heat every hour. Assuming that an average human body is equivalent to about 60 kg of water, what temperature decrease would this heat transfer cause? (Of course, this heat is replaced by body metabolism.)

Instructional Master Energy Production

There are many energy sources that can be used to spin a turbine. If the turbine is connected to a generator, the energy of motion is converted to electrical energy.

In nuclear reactors, the energy released in nuclear fission is absorbed by a primary coolant, which then transfers the energy to a secondary coolant. The energy from the secondary coolant is used in a turbine or engine to generate electrical energy.


Instructional Master Calorimeters

Simple Calorimeter

A simple laboratory calorimeter consists of an insulated container made of three nested polystyrene cups, a measured quantity of water, and a thermometer. The chemical system is placed in or dissolved in the water of the calorimeter. Energy transfers between the chemical system and the surrounding water are monitored by measuring changes in the water temperature.

Bomb Calorimeter

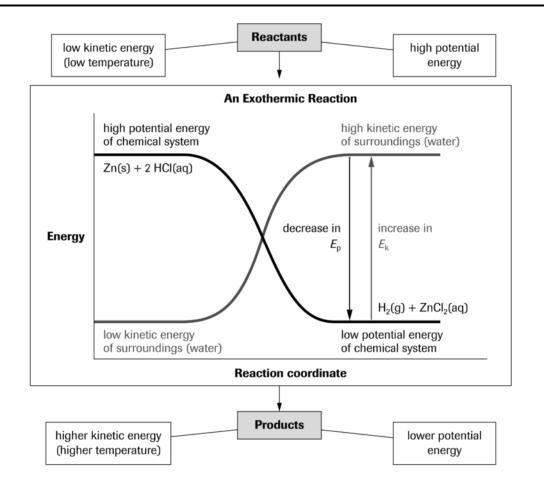
The reactants are placed inside the calorimeter's bomb, which is surrounded by the calorimeter water. Once the calorimeter is sealed and the initial temperature measured, the combustion reaction is initiated by an electric heater or spark. Stirring is essential in order to obtain a uniform final temperature for the water.

Student Worksheet LSM 11.2B Bomb Calorimetry, Extra Exercise (Extension)

Bomb calorimeters are used in research to measure enthalpy changes of combustion of fuels, foodstuffs, crops, and explosives. It is a useful technology, but calorimeters that are larger and more sophisticated than polystyrene cups usually have a noticeable heat transfer to or from the calorimeter materials. The total energy change of the calorimeter is the sum of the energy changes of all of the components.

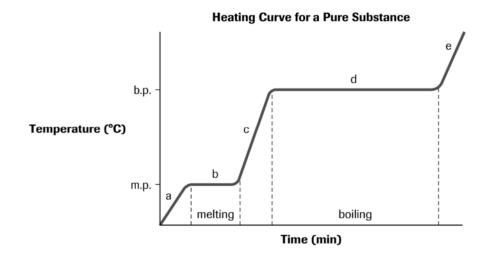
<i>Q</i> =	$mc\Delta t$ +	$m_1 c_1 \Delta t_1 +$	$m_2c_2\Delta t_2$ +	$m_3c_3\Delta t_3$
calorimeter	water	containers	stirrer	thermometer

Because the temperature change is identical for all components and the same components are used over and over again, this total energy calculation can be simplified. The different constants in the equation can be replaced by a single constant, C, the heat capacity of the particular calorimeter. The **heat capacity** of a calorimeter is the total energy absorbed or released per degree Celsius for the calorimeter and its contents. Its units are J/°C or kJ/°C.

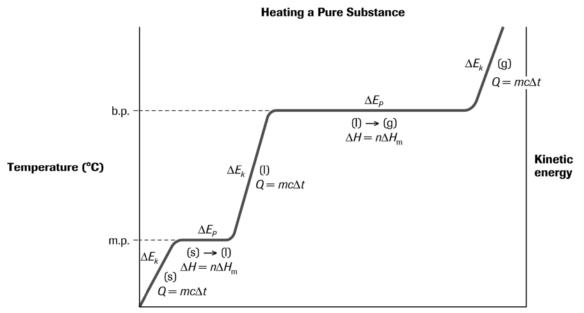

$Q = C\Delta t$

1. An oxygen bomb calorimeter has a heat capacity of 6.49 kJ/°C. The complete combustion of 1.12 g of ethyne, $C_2H_2(g)$, produces a temperature change from 18.60 °C to 27.15 °C. Calculate the molar enthalpy of combustion, $\Delta_c H_m$, for ethyne.

2. Canadian inventors have developed zeolite, a natural aluminium silicate mineral, as a storage medium for solar heat. Zeolite releases heat when hydrated with water. In a test, zeolite is used to heat water in a tank that has a heat capacity of 157 kJ/°C. What is the enthalpy change of hydration (ΔH_h) for zeolite if the temperature of the water increases from 27 °C to 73 °C?


3. Besides the molar enthalpy of combustion as determined in a bomb calorimeter, what other properties or factors are involved in evaluating automobile fuels such as propane, ethanol, and hydrogen?

Energy Transfer Concept Diagram


During an exothermic chemical reaction, some of the potential energy is converted to kinetic energy, which then gets transferred to the surroundings.

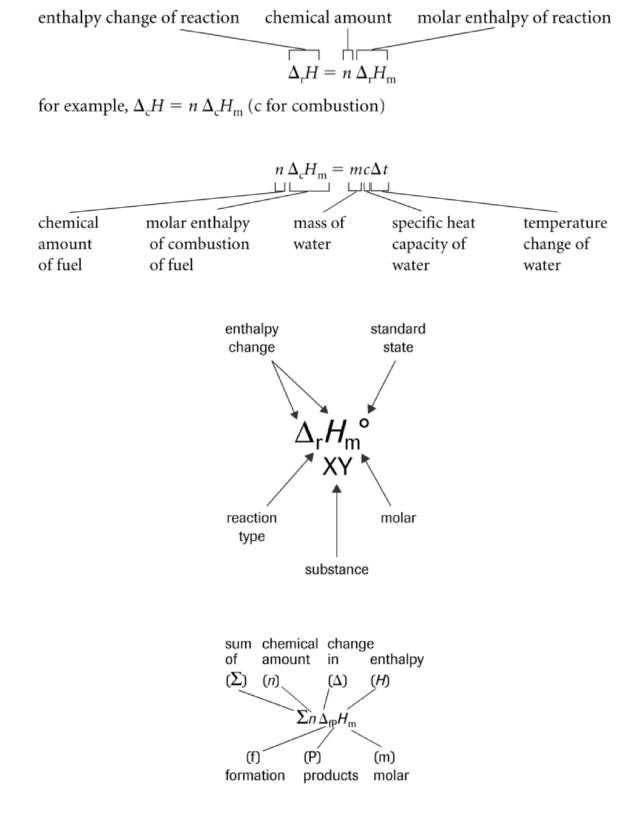
Instructional Master Heating Curves (Extension)

As a pure substance is heated, the following changes can occur: **a** an increase in the temperature of the solid (Q); **b** a phase change from solid to liquid (ΔH); **c** an increase in the temperature of the liquid (Q); **d** a phase change from liquid to gas (ΔH); and

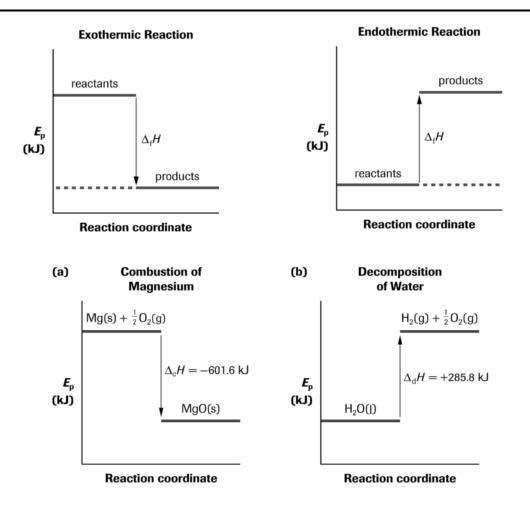
e an increase in the temperature of the gas (Q).

Time or Energy input

Student Worksheet


Enthalpy Changes and Calorimetry, Extra Exercises

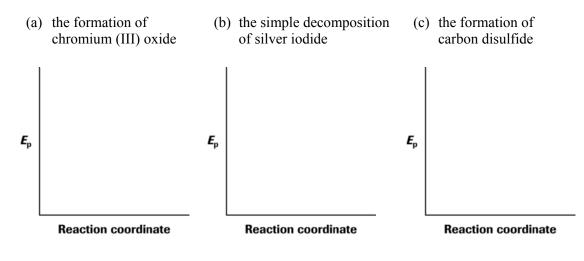
1. An experiment produces evidence that the evaporation of 4.00 g of liquid butane, $C_4H_{10}(l)$, requires a gain in enthalpy of 1.67 kJ. Find the molar enthalpy of vaporization for butane from this evidence.


2. A 40.0 kg industrial calorimeter has an overall specific heat capacity of 1.00 J/(g•°C). Complete combustion of 1.00 g of hydrogen in this calorimeter causes a temperature increase of 3.54 °C. Calculate the molar enthalpy of combustion for hydrogen from this evidence.

3. Combustion of 3.50 g of ethanol, C₂H₅OH(l), in a calorimeter with an overall specific heat capacity of 1.52 J/(g•°C) causes a temperature increase from 19.88 °C to 26.18 °C. The mass of the calorimeter, including water, is 10.0 kg. Find the molar enthalpy of combustion for ethanol from this evidence.

Instructional Master LSM 11.3A Thermochemistry Symbols and Equations

Exothermic and Endothermic Changes


Communicating Energy Changes

SUMMARY Four Ways of Communicating Energy Changes

1. Molar Enthalpy	Exothermic Changes $\Delta_{\rm r} H_{\rm m} < 0$	Endothermic Changes $\Delta_r H_m > 0$
2. Enthalpy Change	reactants \rightarrow products; $\Delta_r H < 0$	reactants \rightarrow products; $\Delta_r H > 0$
3. Term in a Balanced Equation	reactants → products +energy	reactants + energy → products
4. Chemical Potential Energy Diagram	$E_{\rm p} ({\rm reactants}) > E_{\rm p} ({\rm products})$	$E_{\rm p} \ ({\rm reactants}) < E_{\rm p} \ ({\rm products})$

Student WorksheetLSM 11.3DRepresenting Enthalpy Changes, Extra Exercises

- 1. Iron(II) sulfide ore is roasted according to the following chemical equation. $4 \text{ FeS}(s) + 7 \text{ O}_2(g) \rightarrow 2 \text{ Fe}_2\text{ O}_3(s) + 4 \text{ SO}_2(g) \qquad \Delta_c H = -2456 \text{ kJ}$
 - (a) Rewrite this chemical equation including the energy as a term in the balanced equation.
 - (b) What is the molar enthalpy for iron(II) sulfide in this reaction?
 - (c) What is the molar enthalpy for iron(III) oxide in this reaction?
- 2. Boron reacts with hydrogen to form diboron hexahydride (diborane) gas. The molar enthalpy of reaction for boron is +15.7 kJ/mol. Write the balanced chemical equation using whole number coefficients and
 - (a) including the energy change as a $\Delta r H$.
 - (b) including the energy change as a term in the balanced equation.
- 3. The molar enthalpy of combustion for octane, C₈H₁₈₍₁₎, is reported to be -1.3 MJ/mol. Write the balanced chemical equation using whole number coefficients and (a) including the energy change as a $\Delta r H$.
 - (b) including the energy change as a term in the balanced equation.
- 4. Draw potential energy diagrams to communicate the following chemical reactions. Assume SATP conditions.

Hess' Law

SUMMARY Enthalpy of Reaction and Hess' Law

To determine an enthalpy change of a reaction by using Hess' law, follow these steps:

- 1. Write the net reaction equation, if it is not given.
- 2. Manipulate the given equations so they will add to yield the net equation.
- 3. Multiply, divide, and/or reverse the sign of the enthalpy of reaction.
- 4. Cancel and add the remaining reactants and products to yield the net equation.
- 5. Add the component enthalpy changes to obtain the net enthalpy change.
- 6. Determine the molar enthalpy for a reactant or product, if required.

SAMPLE problem 11.4

Use Hess' law to determine the standard enthalpy change for the formation of carbon monoxide.

$$C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g) \qquad \qquad \Delta_f H^\circ = ?$$

This reaction cannot be studied calorimetrically since the combustion of carbon produces carbon dioxide as well as carbon monoxide. However, the standard enthalpy of complete combustion for carbon and for carbon monoxide can be calculated by calorimetric measurements, and the standard enthalpy of formation for carbon monoxide can be determined using Hess law as follows:

(1)	$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta_{\rm c} H^{\circ} = -393.5 \text{ kJ}$
(2)	$2CO(q) + O_2(q) \rightarrow 2CO_2(q)$	$\Delta_{\rm o}H^{\rm o} = -566.0 \text{ kJ}$

Rearrange these two equations, and then add them together to obtain the chemical equation for the formation of carbon monoxide. The first term in the formation equation for carbon monoxide is 1 mol of solid carbon. Therefore, leave equation (1) unaltered so that C(s) will appear on the reactant side when we add the equations. However, we want 1 mol of CO(g) to appear as a product, so reverse equation (2) and divide each of its terms (including the standard enthalpy change) by 2.

$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta_1 H^\circ = -393.5 \text{ kJ}$
$CO_2(g) \rightarrow CO(g) + \frac{1}{2}O_2(g)$	$\Delta_2 H^{\circ} = +283.0 \text{ kJ}$

Note that the sign of the standard enthalpy change in equation (2) has changed, since the equation has been reversed. Now add the reactants, products, and standard enthalpy changes to get a net reaction equation. Note that $CO_2(g)$ can be cancelled because it appears on both sides of the net equation. Similarly, $\frac{1}{2}O_2(g)$ can be cancelled from each side of the equation, resulting in:

$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta_1 H^\circ = -393.5 \text{ kJ}$
$\text{CO}_2(g) \rightarrow \text{CO}(g) + \frac{1}{2} \text{O}_2(g)$	$\Delta_2 H^{\circ} = +283.0 \text{ kJ}$
$C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g)$	$\Delta_{\rm f} H^{\rm o} = -110.5 \ {\rm kJ}$

While manipulating equations (1) and (2), you should check the desired equation and plan ahead to ensure that the substances end up on the correct sides and in the correct chemical amounts.

Student Worksheet

Predicting △*H* Using Hess' Law, Extra Exercises

1. The enthalpy changes for the formation of two tungsten bromides are shown below. $^{-140} = -146.7 \text{ kJ}$ $W(a) + 2 Dr(1) \rightarrow WDr(a)$

$W(S) + 2 Bf_2(I) \rightarrow WBf_4(S)$	$\Delta_1 H^2 = -140.7$	КJ
$W(s) + 3 Br_2(l) \rightarrow WBr_6(s)$	$\Delta_2 H^\circ = -184.4$	kJ

Calculate the standard enthalpy change for the following reaction: $Br_2(l) + WBr_4(s) \rightarrow WBr_6(s)$

(1) $N_2O_4(g) \to 2 NO_2(g)$ $\Delta_1 H^\circ = +58 kJ$ (2) $NO(g) + \frac{1}{2} O_2(g) \to NO_2(g)$ $\Delta_2 H^\circ = -56kJ$ 2. Given: (1) $N_2O_4(g) \rightarrow 2 NO_2(g)$

Calculate the standard enthalpy change for the following reaction: $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_4(g)$

- 3. Use the following reactions and enthalpy changes to predict the standard enthalpy change for: $2 \operatorname{NO}_2(g) + 2 \operatorname{H}_2O(g) \rightarrow 3 \operatorname{O}_2(g) + \operatorname{N}_2H_4(g)$
 - (1) $\frac{1}{2}$ N₂(g) + O₂(g) \rightarrow NO₂(g) $\Delta_1 H^\circ = +33.2 \text{ kJ}$
 - $\Delta_1 H^\circ = +33.2 \text{ kJ}$ $\Delta_2 H^\circ = -241.8 \text{ kJ}$ (2) $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$
 - $\Delta_3 H^\circ = +47.6 \text{ kJ}$ (3) $N_2(g) + 2 H_2(g) \rightarrow N_2H_4(g)$

4. Use the following formation reaction evidence to calculate the standard enthalpy change for the complete combustion of cycloheptane.

(1)
$$C(s) + O_2(g) \rightarrow CO(g)$$

(2) $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$
(3) $7 C(s) + 7 H_2(g) \rightarrow C_7H_{14}(l)$
 $\Delta_1 H^\circ = -393.5 \text{ kJ}$
 $\Delta_2 H^\circ = -241.8 \text{ kJ}$
 $\Delta_3 H^\circ = +115.0 \text{ kJ}$

Hess' Law, Extra Exercises

Instructions

- 1. Cut the known equations into strips. You will have a known equation A on one side of the strip, and its reverse known equation B on the other side.
- 2. Group the known equations with their proper target equations below.
- 3. In each group, flip the known equations until the products and the reactants match those of the target equation.
- 4. Attach (using tape or glue) the known equations on this sheet so the appropriate known equations are above the target equations.
- 5. Number the known equations in each group.
- 6. Multiply the known equations in each group until the stoichiometry of the known equations matches that of the target equation.
- 7. Add the equations and enthalpies to solve for the target equation.
 - (a) What is the enthalpy change for the formation of two moles of nitrogen monoxide from its elements?

 $N_2(g) + O_2(g) \rightarrow 2 NO(g) \qquad \Delta H^\circ = ?$

(b) What is the enthalpy change for the formation of one mole of butane, $C_4H_{10}(g)$, from its elements?

 $\overline{4 \operatorname{C}(\mathrm{s}) + 5 \operatorname{H}_2(\mathrm{g}) \to \operatorname{C}_4 \operatorname{H}_{10}(\mathrm{g})} \quad \Delta H^\circ = ?$

(c) Determine the enthalpy change involved in the formation of two moles of liquid propanol.

 $\overline{6 \operatorname{C}(\mathrm{s}) + 8 \operatorname{H}_2(\mathrm{g}) + \operatorname{O}_2(\mathrm{g})} \rightarrow 2 \operatorname{C}_3 \operatorname{H}_7 \operatorname{OH}(\mathrm{l}) \qquad \Delta H^\circ = ?$

LSM 11.4G (cont'd)

Known Equations A

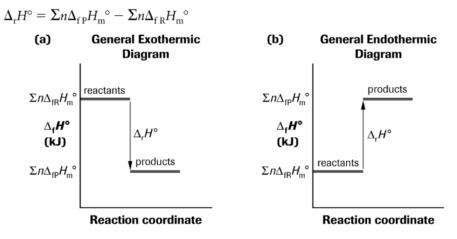
[**Teacher note:** Photocopy Known Equations A on one side of a sheet and Known Equations B on the reverse side of the same sheet.]

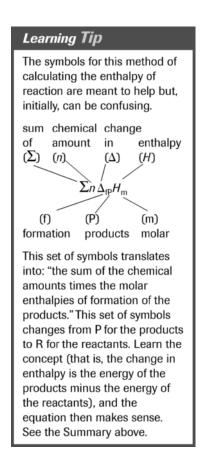
$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{\circ} = -393.5 \text{ kJ}$
$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{\rm o} = -393.5 \text{ kJ}$
$C_3H_7OH(l) + 9/2 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(l)$	$\Delta H^{\circ} = -2008 \text{ kJ}$
$C_4H_{10}(g) + 13/2 O_2(g) \rightarrow 4 CO_2(g) + 5 H_2O(g)$	$\Delta H^{\rm o} = -2657 \text{ kJ}$
$\frac{1}{2} N_2(g) + O_2(g) \rightarrow NO_2(g)$	$\Delta H^{\circ} = +34 \text{ kJ}$
$\mathrm{H}_{2}\mathrm{O}(\mathbf{l}) + \mathrm{H}_{2}(\mathbf{g}) \rightarrow \frac{1}{2} \mathrm{O}_{2}(\mathbf{g})$	$\Delta H^{\circ} = +286 \text{ kJ}$
$2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{H}_2\operatorname{O}(g)$	$\Delta H^{\rm o} = -483.6 \text{ kJ}$
$NO_2(g) \rightarrow NO(g) + \frac{1}{2} O_2(g)$	$\Delta H^{\circ} = +56 \text{ kJ}$

LSM 11.4G (cont'd)

Known Equations B

[**Teacher note:** Photocopy Known Equations A on one side of a sheet and Known Equations B on the reverse side of the same sheet.]


$\mathrm{CO}_2(\mathbf{g}) \rightarrow \mathrm{C}(\mathbf{s}) + \mathrm{O}_2(\mathbf{g})$	ΔH° = +393.5 kJ
$CO_2(g) \rightarrow C(s) + O_2(g)$	ΔH° = +393.5 kJ
$3 \operatorname{CO}_2(g) + 4 \operatorname{H}_2O(l) \rightarrow \operatorname{C}_3\operatorname{H}_7O\operatorname{H}(l) + \frac{9}{2} \operatorname{O}_2(g)$	$\Delta H^{\circ} = +2008 \text{ kJ}$
$4 \text{ CO}_2(g) + 5 \text{ H}_2\text{O}(g) \rightarrow \text{C}_4\text{H}_{10}(g) + \frac{13}{2} \text{ O}_2(g)$	$\Delta H^{\circ} = +2657 \text{ kJ}$
$NO_2(g) \rightarrow \frac{1}{2} N_2(g) + O_2(g)$	$\Delta H^{\circ} = -34 \text{ kJ}$
$\frac{1}{2} O_2(g) \rightarrow H_2O(l) + H_2(g)$	Δ <i>H</i> ° = – 286 kJ
$2 \operatorname{H}_2 \operatorname{O}(g) \to 2 \operatorname{H}_2(g) + \operatorname{O}_2(g)$	ΔH° = +483.6 kJ


 $\frac{1}{2} O_2(g) + NO(g) \rightarrow NO_2(g) \qquad \qquad \Delta H^\circ = -56 \text{ kJ}$

Instructional Master LSM 11.5A Enthalpies of Formation—Symbols of Use

SUMMARYUsing Enthalpies of Formation to PredictStandard Enthalpy Changes, $\Delta_r H^{\circ}$

According to Hess' law, the net enthalpy change for a chemical reaction is equal to the sum of the chemical amounts times the molar enthalpies of formation of the products minus the sum of the chemical amounts times the molar enthalpies of formation of the reactants.

Summary of Energy Calculations

Table 1 Heat Transfer, Q (heating/cooling)

Equation	Empirical constant	Symbol	Typical units
$Q = mc \Delta t$	specific heat capacity	с	J
			g∙°C

Table 2 Enthalpy Change, $\Delta_r H_{mol} = n \Delta_r H$

Quantity	Alternative names	Symbol	Typical units
enthalpy change	heat of reaction change in heat content	$\Delta_{r} \mathcal{H}$	kJ
molar enthalpy	molar heat heat content per mole	∆ _r H _m * (substance)	kJ mol

* In some resources the subscript m is omitted from the symbol. In this case, it is usually possible to infer from the context whether the symbol refers to molar enthalpy or enthalpy change.

Table 3 Classification of Reactions and $\Delta_r H$

Reaction type	Definition	Symbol	∆ <i>H</i> Names
formation	elements \rightarrow compound	$\Delta_{f} \boldsymbol{\mathcal{H}}$	enthalpy of formation or heat of formation
combustion	substance + $O_2(g) \rightarrow common$ oxides	$\Delta_{c}H$	enthalpy of combustion or heat of combustion
all other types*		$\Delta_{r} \mathcal{H}$	enthalpy of reaction or heat of reaction

(superscript ^o means SATP(standard) conditions)

*If the reaction type has a specific name, then that name may be used to label enthalpy or ΔH ; e.g., simple decomposition, $\Delta_{sd}H$ or neutralization Δ_nH . Molar quantities are designated as, for example, Δ_fH_m and have units of kilojoules per mole (kJ/mol).

Problem-Solving Summary

1. Calorimetry Method

	$\Delta_{\rm r} H = Q$
	(system) (water equivalent)
$n\Delta_{\rm r}H_{\rm m}$	$= mc\Delta t$ (substance)
2. Hess's Law	$\Delta_{\rm r} H^{\rm o} = \Sigma \Delta_{\rm r} H^{\rm o}$

3. Formation Method $\Delta_{\rm r} H^{\circ} = \sum n \Delta_{\rm fp} H_{\rm m}^{\circ} - \sum n \Delta_{\rm fR} H_{\rm m}^{\circ}$

Student Worksheet

Predicting ∆*H* Using Standard Enthalpies of Formation, Extra Exercises

- 1. Laboratory quantities of ethene can be prepared by an elimination reaction of ethanol using an acid catalyst. Calculate the enthalpy change for the conversion of ethanol into ethene and water using standard enthalpies of formation.
- 2. Calculate the molar enthalpy of combustion for acetic acid using standard enthalpies of formation.
- 3. An initial step in the production of iron in a blast furnace involves the conversion of iron(III) oxide and carbon monoxide into iron(II, III) oxide, Fe₃O₄(s), and carbon dioxide. Calculate the enthalpy of this reaction using standard enthalpies of formation.
- 4. The fertilizer urea is produced along with liquid water by the reaction of ammonia and carbon dioxide. Calculate the enthalpy of this reaction using standard enthalpies of formation.

Student Worksheet

Multi-Step Energy Calculations, Extra Exercises

- For the following combustion, what mass of carbon dioxide is produced when 1500 kJ of energy is released?
 2 C₂H₆(g) + 7 O₂(g) → 4 CO₂(g) + 6 H₂O(g) + 2502 kJ
- How much energy is released when 1.00 t of sulfur trioxide is produced by the following reaction?
 2 SO₂(g) + O₂(g) → 2 SO₃(g) Δ_rH = −192.8 kJ
- 3. In respiration, glucose is oxidized by oxygen gas to produce carbon dioxide gas, liquid water, and energy. What is the energy released when 18.0 g of glucose is consumed?
- 4. Methanol is burned in a bomb calorimeter. Liquid water is formed as a product. If 3.40 g of methanol reacts, what is the expected temperature change in a 6.00 kg calorimeter with a heat capacity of 1.125 J/(g•°C)?
- 5. A waste heat exchanger is used to absorb the energy from the complete combustion of hydrogen sulfide gas. What volume of water undergoing a temperature change of 64 °C is required to absorb all of the energy from the burning of 15 kg of hydrogen sulfide?

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

explain how the sun is a major source of stored chemical energy on Earth (11.1) apply the equation $Q = mc\Delta t$ to the analysis of energy transfer	
(11.2) define enthalpy and molar enthalpy for chemical reactions (11.2, 11.3)	
use calorimetry evidence to determine enthalpy changes in chemical reactions (11.2, 11.3, 11.4, 11.5)	
describe photosynthesis, cellular respiration, and hydrocarbon combustion reactions, and understand that combustion and cellular respiration are similar and the reverse of photosynthesis (11.3)	
write and interpret balanced chemical equations incorporating $\Delta_r H$ notation (11.3)	
classify chemical reactions as endothermic or exothermic (11.3, 11.4, 11.5)	
explain and use Hess' law to calculate energy changes for a net reaction from a series of reactions (11.4)	
predict the standard enthalpy change for chemical equations using standard molar enthalpies of formation (11.5)	

state that a goal of technology is to solve practical problems (11.1, 11.2)	
recognize that solving technological problems may require various solutions and have both intended and unintended consequences (11.1, 11.3, 11.4)	

Skills

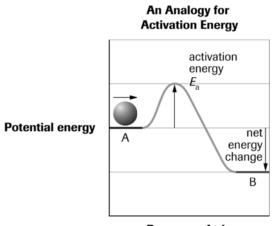
initiating and planning	design a method to compare molar enthalpy changes when burning fuels (11.2) describe procedures for safe handling, storage, and disposal of materials used in the laboratory, with reference to WHMIS and consumer product labelling information (11.2, 11.4)	
performing and recording	perform calorimetry experiments to determine molar enthalpy changes and use thermometers appropriately (11.2, 11.4)	
analyzing and interpreting	compare energy changes by analyzing data and energy diagrams (11.3, 11.4, 11.5)	
communication and teamwork	work collaboratively using appropriate notation and units for enthalpy changes and molar enthalpies (11.2, 11.3, 11.4, 11.5)	

LSM 11.CS (cont'd)

Key Terms

444		
11.1	thermochemistry	
	isolated system	
	calorimetry	
	calorimeter	
	heat	
	thermal energy, Q	
	specific heat capacity, c	
	joule (J)	
	enthalpy change, ΔH or	
	∆rH	
	exothermic reaction	
	endothermic reaction	
	enthalpy of reaction	
	molar enthalpy of	
	reaction,	
	$\Delta_{\rm r} H_{\rm m}$	
11.3	standard molar enthalpy	
	of	
	reaction, $\Delta_{\rm r} H_{\rm m}^{\circ}$	
	chemical potential	
	energy	
	diagram	
11.4	Hess' law	
11.5	reference energy state	
	standard enthalpy of	
	formation $\Delta_{f}H^{\circ}$	
	thermal stability	

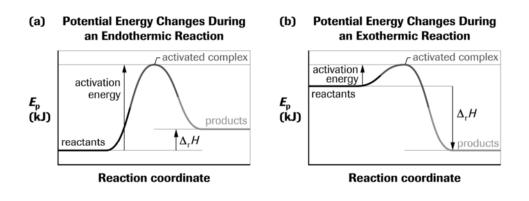
Key STS


consider one's personal reliance on chemical energy (CS: Personal Use of Chemical Energy; Section 11.4 Question 66; Chapter 11 Review questions 22, 30)	
explore uses of and alternatives to fossil fuels, including consequences (CS: Personal Use of Chemical Energy; Section 11.1 Questions 7-9, 12, 14, 15; Section 11.2 Questions 5, 9, 12; DYK: Renewable Energy Sources; Section 11.3 Question 8; DYK: Carbon Monoxide Poisoning; DYK: Cogeneration; EI: Alternative Energy Sources and Technologies; Section 11.4 Questions 1-5; WA: WQ—Rocket Fuel Thermochemistry; Section 11.5 Questions 5, 6; Chapter 11 Review questions 20, 31, 32)	
use energy more efficiently (CS: Personal Use of Chemical Energy; Section 11.1 Questions; WA: CS—Thermal Insulation)	

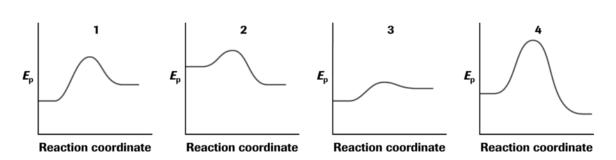
Key Skills

communicate energy changes of chemical reactions (Section 11.3; Section 11.4; Section 11.5; 6; Chapter 11 Review)	
design and use simple calorimeters (Investigation 11.1; Investigation 11.2; Investigation 11.3)	

Instructional Master


Activation Energy and Potential Energy

Progress of trip


Figure 3

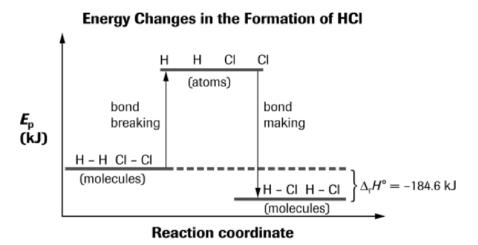
On a trip from A to B, there is a net decrease in potential energy, but there must be an initial increase in potential energy (activation energy) for the trip to be possible.

Student Worksheet

Energy Changes During a Chemical Reaction, Extra Exercises

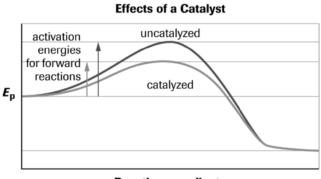
For each of the diagrams above, explain the *reasoning* in complete sentence statements, in terms of the changes in potential energy and kinetic energy over the duration of the reaction.

1.


2.

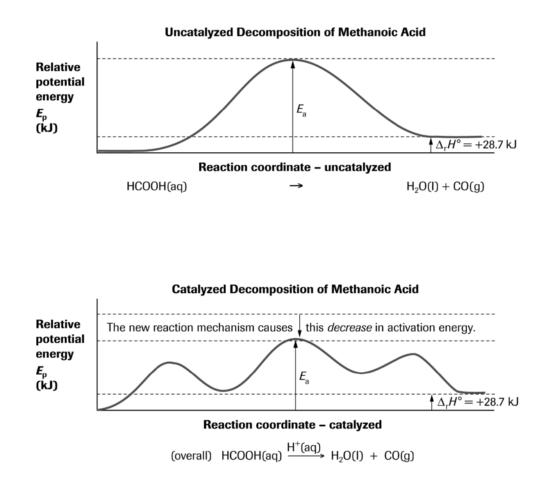
3.

SUMMARY Bond Energy and Enthalpy Changes


- Bond energy is the energy required to break a chemical bond; it is also the energy released when a bond is formed.
- The change in enthalpy represents the net effect from breaking and making bonds. $\Delta_r H = (\text{energy released from bond making}) - (\text{energy required for bond breaking})$ Exothermic reaction: making > breaking ($\Delta_r H$ is negative.) Endothermic reaction: breaking > making ($\Delta_r H$ is positive.)

Example:

 $H_2(g) + Cl_2(g) \rightarrow 2 HCl(g) + energy$


Instructional Master LSM 12.3C A Theoretical Explanation of Catalysis

Reaction coordinate

Figure 4

The catalyzed pathway has a lower activation energy, so more collisions lead to a successful reaction.

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

analyze and label energy diagrams	
for a chemical reaction, including	
reactants, products, enthalpy change,	
and activation energy (all sections)	
define activation energy as the	
energy barrier that must be overcome	
for a chemical reaction to occur	
(12.1)	
explain the energy changes that	
occur during chemical reactions	
referring to bonds breaking and	
forming and changes in potential and	
kinetic energy (12.2)	
explain that catalysts increase	
reaction rates by providing alternative	
pathways for changes without	
affecting the net energy involved	
(12.3)	
(12.5)	

STS

recognize the values and limitations of technological products and processes (12.1, 12.3)	
state that a goal of technology is to solve practical problems (12.2)	
evaluate technologies from a variety of perspectives (12.3)	

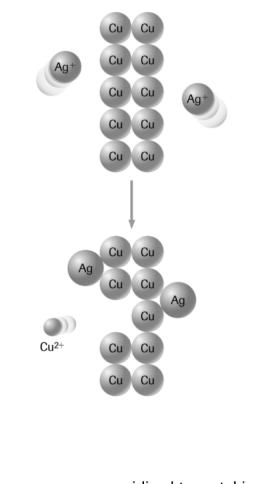
Skills

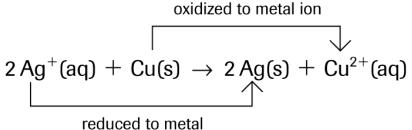
initiating and planning	describe procedures for safe handling, storage, and disposal of materials used in the laboratory, with reference to WHMIS and consumer product labelling information (12.3)	
perform- ing and recording	plot chemical potential energy diagrams, enthalpy diagrams, and energy pathway diagrams indicating changes in energy for chemical reactions (all sections)	

analyzing and interpret- ing	interpret energy diagrams for chemical reactions (all sections)	
communi- cation and teamwork	work collaboratively in addressing problems and apply the skills and conventions of science in communicating information and ideas and in assessing results by using appropriate SI notation, and fundamental and derived units for calculating and communicating enthalpy changes (all sections)	

Key Terms

12.1	activation energy, Ea	
12.2	bond energy	
12.3	catalysis	
	catalysis	
	enzyme	
	intermediate	


Key STS


give examples of the use and importance of catalysts to reduce air pollution from the burning of hydrocarbons	
give examples of the use and importance of enzymes in natural and technological systems	

Key Skills

design an experimental procedure to illustrate the effect of a catalyst on a chemical reaction (<i>Investigation 12.1</i> , <i>Section 12.3 Question 7</i>)	
create illustrated presentations (WA: WQ—Neurotransmitters and Nerve Agents; Section 12.1 Question 10; Unit 6	
Review question 34	

Instructional Master Oxidation and Reduction

"LEO the lion says "GER" is a mnemonic to help remember that "Loss of Electrons is Oxidation" and "Gain of Electrons is Reduction."

Writing Half-Reaction Equations

SUMMARY

Writing Half-Reaction Equations

- Step 1: Write the chemical formulas for the reactants and products.
- Step 2: Balance all atoms, other than O and H.
- **Step 3:** Balance O by adding H₂O(l).
- **Step 4:** Balance H by adding $H^+(aq)$.
- **Step 5:** Balance the charge on each side by adding e⁻ and cancel anything that is the same on both sides.

For basic solutions only:

- **Step 6:** Add $OH^{-}(aq)$ to both sides to equal the number of $H^{+}(aq)$ present.
- **Step 7:** Combine $H^+(aq)$ and $OH^-(aq)$ on the same side to form $H_2O(l)$. Cancel equal amounts of $H_2O(l)$ from both sides.

SAMPLE problem 13.2

Nitrous acid can be reduced in an acidic solution to form nitrogen monoxide gas. What is the reduction half-reaction for nitrous acid?

The first step is to write the reactants and products.

 $HNO_2(aq) \rightarrow NO(g)$

If necessary, you should balance all atoms other than oxygen and hydrogen in this partial equation. In this example, there is only one nitrogen atom on each side.

Next, add water molecules, present in an aqueous solution, to balance the oxygen atoms.

 $HNO_2(aq) \rightarrow NO(g) + H_2O(l)$

Because the reaction takes place in an acidic solution, hydrogen ions are available. These can be used to balance the hydrogen on both sides of the equation.

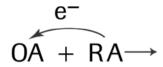
 $H^{+}(aq) + HNO_{2}(aq) \rightarrow NO(g) + H_{2}O(I)$

At this stage, all of the atoms should be balanced, but the charge on both sides will not be balanced. Add an appropriate number of electrons to balance the charge. Because electrons carry a negative charge, they are always added to the less negative, or more positive, side of the half-reaction.

 $e^- + H^+(aq) + HNO_2(aq) \rightarrow NO(g) + H_2O(I)$

This balanced half-reaction equation represents a gain of electrons, or a reduction of the nitrous acid. Check to make sure that both the atom symbols and the charge are balanced.

Balancing Redox Equations with Half-Reaction Equations, Extra Exercises


Ва 1.	lance the following reaction equations. HNO ₂ (aq) + In ⁺ (aq) \rightarrow NO(g) + In ³⁺ (aq)	(acidic solution)
2.	$\mathrm{TiO}_{2}(s) + \mathrm{V}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Ti}(s) + \mathrm{V}^{3+}(\mathrm{aq})$	(acidic solution)
3.	$\operatorname{BrO}_3^-(\operatorname{aq}) + \operatorname{H}_2C_2O_4(\operatorname{aq}) \to \operatorname{Br}^-(\operatorname{aq}) + \operatorname{CO}_2(\operatorname{g})$	(acidic solution)
4.	$MnO_4^{-}(aq) + SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq) + MnO_2(s)$	(basic solution)
5.	$OF_2(aq) + I^-(aq) \rightarrow F^-(aq) + I_3^-(aq)$	(acidic solution)
6.	$CH_{3}OH(aq) + MnO_{4}^{-}(aq) \rightarrow MnO_{4}^{2-}(aq) + CO_{3}^{2-}(aq)$	(basic solution)

7. $Hg(l) + H_3IO_6^{2-} \rightarrow Hg_2O(s) + IO_3^{-}(aq)$ (basic solution)

Instructional Master Creating a Redox Table

Table 3 Relative Strengths of Oxidizing and Reducing Agents

		$\mathbf{OA} + \mathbf{n} \mathbf{e}^{-} \rightleftharpoons \mathbf{RA}$	
decreasing reactivity of oxidizing agents	SOA	$\begin{array}{c} Ag^{+}(aq) \ + \ e^{-} \ \rightleftharpoons Ag(s) \\ Cu^{2+}(aq) \ + \ 2 \ e^{-} \ \rightleftharpoons Cu(s) \\ Pb^{2+}(aq) \ + \ 2 \ e^{-} \ \rightleftharpoons Pb(s) \\ Zn^{2+}(aq) \ + \ 2 \ e^{-} \ \rightleftharpoons Zn(s) \end{array} \begin{array}{c} \end{tabular} \begin{tabular}{lll} \end{tabular} & \end{tabular} \end{tabular} \end{tabular} \end{tabular}$	

Figure 3

In all redox reactions, electrons are transferred from a reducing agent (RA) to an oxidizing agent (OA).

The redox spontaneity rule

SUMMARY Five-Step Method for Predicting Redox Reactions

- **Step 1:** List all entities present and classify each as a possible oxidizing agent, reducing agent, or both. Do not label spectator ions.
- **Step 2:** Choose the strongest oxidizing agent as indicated in a redox table, and write the equation for its reduction.
- **Step 3:** Choose the strongest reducing agent as indicated in the table, and write the equation for its oxidation.
- **Step 4:** Balance the number of electrons lost and gained in the half-reaction equations by multiplying one or both equations by a number. Then add the two balanced half-reaction equations to obtain a net ionic equation.
- **Step 5:** Using the spontaneity rule, predict whether the net ionic equation represents a spontaneous or nonspontaneous redox reaction.

1. The following equations represent spontaneous reactions. From this evidence, set up a table of relative strengths of oxidizing and reducing agents. Write half-reaction equations and label the strongest oxidizing agent and reducing agent.

 $\begin{array}{c} \text{spont.}\\ \text{Co}(s) + \text{Pd}^{2+}(aq) \rightarrow \text{Co}^{2+}(aq) + \text{Pd}(s)\\ \text{spont.}\\ \text{Pd}(s) + \text{Pt}^{2+}(aq) \rightarrow \text{Pd}^{2+}(aq) + \text{Pt}(s)\\ \text{spont.}\\ \text{Mg}(s) + \text{Co}^{2+}(aq) \rightarrow \text{Mg}^{2+}(aq) + \text{Co}(s) \end{array}$

2. The following equations are interpretations of the evidence from the reactions of four metals with various cation solutions. Make a table of half-reactions and arrange the four metallic ions and the hydrogen ion in order of their decreasing tendency to react. Label the strongest oxidizing agent and reducing agent.

spont.

$$Cd(s) + 2 H^{+}(aq) \rightarrow Cd^{2+}(aq) + H_{2}(g)$$

spont.
 $Hg(s) + 2 H^{+}(aq) \rightarrow Hg^{2+}(aq) + H_{2}(g)$
 $Be(s) + Cd^{2+}(aq) \rightarrow Be^{2+}(aq) + Cd(s)$
nonspont.
 $Ca^{2+}(aq) + Be(s) \rightarrow Ca(s) + Be^{2+}(aq)$

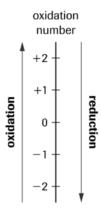
LSM13.2D (cont'd)

3. Four metals were placed into test tubes containing various ion solutions. Their resulting behaviour is communicated by the equations below. Create a half-reaction table and order the metallic ions and the hydrogen ion according to their tendency to react. Label the strongest oxidizing agent and reducing agent.

nonspont.
Pt(s) + 2 H⁺(aq)
$$\rightarrow$$
 Pt²⁺(aq) + H₂(g)
spont.
2 Ce(s) + 3 Ni²⁺(aq) \rightarrow 2 Ce³⁺(aq) + 3 Ni(s)
spont.
3 Sr(s) + 2 Ce³⁺(aq) \rightarrow 3 Sr²⁺(aq) + 2 Ce(s)
spont.
Ni(s) + 2 H⁺(aq) \rightarrow Ni²⁺(aq) + H₂(g)

4. A student is required to store an aqueous solution of iron(III) nitrate. She has a choice of a copper, tin, iron, or silver container. Use the table of relative strengths of oxidizing and reducing agents in Appendix I and an appropriate generalization to predict which container would be most suitable for storing the solution.

5. An analytical chemist reacts an unknown metal X with a copper(II) sulfate solution, plating out copper metal. Metal X does not react with aqueous zinc nitrate. What is the order for these metal ions in decreasing tendency to react? What groups of metals are eliminated as a possible identity of the unknown metal? What other solutions might next be chosen to help identify the unknown metal?


Student Worksheet LSM13.2F Predicting Redox Reactions, Extra Exercises

For each of the following questions, use the five-step method to predict and communicate the most likely redox reaction, and use the spontaneity rule to predict whether the reaction will occur spontaneously.

- 1. An aqueous solution of potassium permanganate was reacted with an acidic solution of sodium bromide and an orange–brown substance was formed.
- 2. A strip of silver metal is placed in a solution of aqueous nickel(II) chloride.
- 3. Liquid mercury is mixed with a paste of acidic manganese(IV) oxide.
- 4. Hydrogen peroxide and silver nitrate are mixed.
- 5. Potassium metal is placed into some water.
- 6. In a car battery, lead and lead(IV) oxide electrodes are exposed to a sulfuric acid electrolyte. (Assume that the sulfuric acid ionizes to hydrogen and sulfate ions.)

Table 1 Common Oxidation Numbers

Atom or ion	Oxidation number	Examples
all atoms in elements	0	Na is 0 Cl in Cl ₂ is 0
hydrogen in all compounds, except hydrogen in hydrides	+1 -1	H in HCl is +1 H in LiH is -1
oxygen in all compounds, except oxygen in peroxides	-2 -1	O in H_2O is -2 O in H_2O_2 is -1
all monatomic ions	charge on ion	Na ⁺ is +1 S ²⁻ is -2

Learning Tip

Oxidation numbers are simply positive or negative numbers assigned on the basis of a set of arbitrary rules. It is important for you to realize that these are not electric charges. For this reason, chemists use the term *oxidation number*. For example, we assign oxidation numbers of -2 and +1 to the oxygen and hydrogen atoms in a water molecule.

Figure 3

In a redox reaction, both oxidation and reduction occur.

SUMMARY Determining Oxidation Numbers

Step 1: Assign common oxidation numbers (Table 1 on page 583).

- **Step 2:** The total of the oxidation numbers of atoms in a molecule or ion equals the value of the net electric charge on the molecule or ion.
 - (a) The sum of the oxidation numbers for a compound is zero.
 - (b) The sum of the oxidation numbers for a polyatomic ion equals the charge on the ion.
- **Step 3:** Any unknown oxidation number is determined algebraically from the sum of the known oxidation numbers and the net charge on the entity.

1. Assign oxidation numbers to chlorine in each of the following chemicals.

HCl(aq), $Cl_2(g)$,NaClO(s), $Cl^-(aq)$,HClO_3(aq), $ClO_3^-(aq)$, $KClO_2(s)$, $ClO_2(g)$, $HClO_4(aq)$

2. Assign oxidation numbers to manganese in each of the following chemicals.

 $MnO_{2}(s), KMnO_{4}(s), Mn(s), MnO_{4}^{2-}(aq), MnCl_{2}(s), Mn_{2}O7(s), Mn^{2+}(aq)$

For the following reaction equations, use oxidation numbers to identify the oxidation (the atom oxidized) and the reduction (the atom reduced).

3.
$$AsO_3^{3-}(aq) + IO_3^{-}(aq) \rightarrow AsO_4^{3-}(aq) + I^{-}(aq)$$

4.
$$CuO(s) + NH_3(g) \rightarrow N_2(g) + H_2O(l) + Cu(s)$$

5.
$$MnO_4^{-}(aq) + H_2Se(g) + H^+(aq) \rightarrow Se(s) + Mn^{2+}(aq) + H_2O(l)$$

6.
$$PbO_2(s) + Pb(s) + H_2SO_4(aq) \rightarrow PbSO_4(s) + H_2O(l)$$

7.
$$Cl_2(g) + OH^{-}(aq) \rightarrow ClO_3^{-}(aq) + Cl^{-}(aq) + H_2O(l)$$

Instructional Master LSM 13.3D Balancing Redox Equations Using Oxidation Numbers

SUMMARY Balancing Redox Equations Using Oxidation Numbers

- **Step 1:** Assign oxidation numbers and identify the atoms/ions whose oxidation numbers change.
- **Step 2:** Using the change in oxidation numbers, write the number of electrons transferred per atom.
- **Step 3:** Using the chemical formulas, determine the number of electrons transferred per reactant. (Use the formula subscripts to do this.)
- **Step 4:** Calculate the simplest whole number coefficients for the reactants that will balance the total number of electrons transferred. Balance the reactants and products.
- **Step 5:** Balance the O atoms using $H_2O(l)$, and then balance the H atoms using $H^+(aq)$.

For basic solutions only

- **Step 6:** Add $OH^{-}(aq)$ to both sides equal in number to the number of $H^{+}(aq)$ present.
- **Step 7:** Combine $H^+(aq)$ and $OH^-(aq)$ on the same side to form $H_2O(l)$, and cancel the same number of $H_2O(l)$ on both sides.

Student Worksheet

LSM 13.3E

Balancing Redox Equations Using Oxidation Numbers, Extra Exercises

Balance the following reaction equations.

1.
$$\operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{Fe}^{3+}(\operatorname{aq}) \to \operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{Sn}^{4+}(\operatorname{aq})$$
 (neutral solution)

2.
$$CH_3OH(aq) + MnO_4(aq) \rightarrow Mn^{2+}(aq) + CH_2O(aq)$$
 (acidic solution)

3.
$$Fe^{2+}(aq) + Cr_2O_7^{2-}(aq) \rightarrow Cr^{3+}(aq) + Fe^{3+}(aq)$$
 (acidic solution)

4.
$$CH_3OH(aq) + MnO_4^{-}(aq) \rightarrow MnO_4^{2-}(aq) + CO_3^{2-}(aq)$$
 (basic solution)

5.
$$MnO_4^{-}(aq) + SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq) + MnO_2(s)$$
 (basic solution)

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

Skills

•	 		
define oxidation and reduction	initiating and	design an	
operationally (historically) and	planning	experiment to	
theoretically (13.1, 13.2, 13.3)		determine the	
define the following terms: oxidizing		reactivity of various	
agent, reducing agent, oxidation		metals (13.1, 13.2)	
number, half-reaction,		describe procedures	
disproportionation (13.1, 13.2, 13.3)		for safe handling,	
differentiate between redox reactions		storing, and disposal	
and other reactions by identifying half-		of materials used in	
reactions and changes in oxidation		the laboratory, with	
number (13.1, 13.2, 13.3)		reference to WHMIS	
identify electron transfer, oxidizing		and consumer	
agents, and reducing agents in		product labelling	
redox reactions that occur in		information (13.1,	
everyday life in both living and		13.2, 13.4)	
nonliving systems (all sections)	performing	select and correctly	
compare the relative strengths of	and	use the appropriate	
oxidizing and reducing agents from	recording	equipment to	
empirical data (13.2)	0	perform a redox	
predict the spontaneity of a redox		titration (13.4)	
reaction based on a redox table,		use a standard	
and compare predictions to		reduction potential	
experimental		table as a tool in	
results (13.2)		predicting the	
write and balance equations for		spontaneity of	
redox reactions in acidic, basic, and		redox reactions and	
neutral solutions, including		their products	
disproportionation reactions, by		(13.2, 13.4)	
using half-reaction equations,		create charts, tables	
developing simple half-reaction		or spreadsheets that	
equations, and assigning oxidation		present the results	
numbers (13.2, 13.3, 13.4)		of redox	
perform calculations to determine		experiments (13.1,	
quantities of substances involved in		13.2, 13.4)	
redox titrations (13.4)	analyzing	analyze evidence	
	and	from an experiment	
	interpreting	to derive a simple	
STS		reduction table (13.2)	
		interpret patterns and	
state that a goal of technology is to		trends in data	
solve practical problems (all sections)		derived from redox	
recognize that technological		reactions (all	
problems may require various		sections)	
solutions and have both intended		evaluate redox	
and unintended consequences		experiments,	
(13.1, 13.2, 13.3)		including identifying	
		Alson Breathatters and the s	

the limitations of the evidence (13.1, 13.2,

13.4)

LSM 13.CS (cont'd)

communication and teamwork	work collaboratively in addressing problems, and select and use appropriate modes of representation for redox reactions and answers to problems related to redox titrations (all sections)	

Key Terms

13.1	half-reaction
	reduction
	oxidation
	redox reaction
13.2	reducing agent
	oxidizing agent
	redox spontaneity rule
	disproportionation
13.3	oxidation number
	oxidation
	reduction

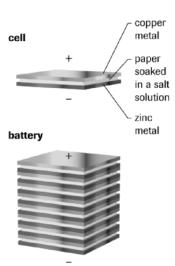
Key STS

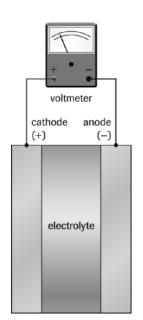
1		
	identify solutions to practical problems in early metallurgy, various cleaners, food preservation, and medical analyses (Exploration: Cleaning Silver; CS: Early Metallurgy; Investigation 13.4: Analyzing a Hydrogen Peroxide Solution)	
	analyze the implications of redox processes in various applications, such as pulp and paper, corrosion, antioxidants, and blood analysis technologies (WA: Piercings—A Rash Decision; WA Catalytic Converters; CS: Bleaching Wood Pulp; WA: Imants Lauks)	
	research a variety of careers (CC: Materials/Metallurgical Engineer; WA: Henry Taube and Rudolph Marcus; CC: Conservator; WA: Imants Lauks)	

Key Skills

create charts, tables, or spreadsheets that present the results of redox experiments (Investigation 13.1: Single Replacement Reactions; Investigation 13.2 Spontaneity of Redox Reactions; LE 13.A Building a Redox Table; Investigation 13.3: Predicting the Reaction of Sodium Metal; Investigation 13.4: Analyzing a Hydrogen Peroxide Solutions)	
interpret patterns and trends in data derived from redox reactions (Investigation 13.1: Single Replacement Reactions; WA: Redox Reaction; Investigation 13.2 Spontaneity of Redox Reactions; LE 13.A Building a Redox Table; Investigation 13.3: Predicting the Reaction of Sodium Metal; LE 13.B: Oxidation States of Vanadium; LE 13.C: Analyzing for Tin; LE 13.D: Analyzing for Chromium in Steel; Investigation 13.4: Analyzing a Hydrogen Peroxide Solutions)	
identify the limitations of data collected (Investigation 13.1: Single Replacement Reactions; Investigation 13.2 Spontaneity of Redox Reactions; LE 13.A Building a Redox Table; Investigation 13.3: Predicting the Reaction of Sodium Metal; Investigation 13.4: Analyzing a Hydrogen Peroxide Solutions)	

Instructional Master Electric Cells


Figure 1


A version of Volta's first battery. Each beaker contains two different metals, copper and zinc, in an electrolyte, salt water. A series of beakers forms a series of cells (a battery) whose total voltage is the sum of the individual voltages of all cells.

Zn Cu

Figure 2

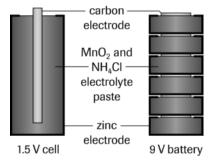
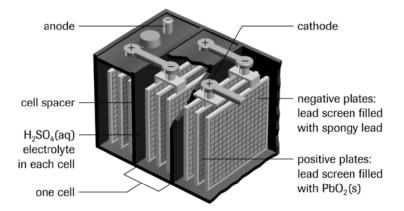
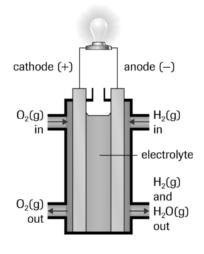

Volta's revised cell design, simpler than the first, consisted of a sandwich of two metals separated by paper soaked in salt water (the electrolyte). A cell consisted of a layer of zinc metal separated from a layer of copper metal by the brine-soaked paper. A large pile of cells could be constructed to give more electrical energy per unit charge.

Figure 3

An electric cell always contains two electrodes—an anode and a cathode—and an electrolyte. When testing the voltage of a cell or battery, the red (+) lead of the voltmeter is connected to the positive electrode (cathode), and the black (–) lead is connected to the negative electrode (anode).




Figure 6

Like a flashlight D cell, the zinc chloride dry cell on the left has a voltage of 1.5 V. The 9 V battery on the right is made up of six 1.5 V dry cells in series.

Figure 7

The anodes of a lead–acid car battery are composed of spongy lead and the cathodes are composed of lead(IV) oxide on a metal screen. The large electrode surface area is designed to deliver sufficient current to start a car engine.

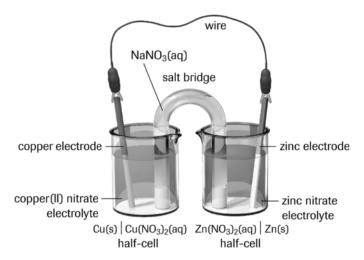
Figure 8

A hydrogen–oxygen fuel cell. Hydrogen and oxygen gases are continuously pumped into the cell, and each reacts at a different electrode. Unused gases are removed, filtered, and then recycled.

Instructional Master

Primary, Secondary, and Fuel Cell Characteristics

Туре	Name of cell	Half-reactions	Characteristics and uses
primary cells	dry cell (1.5 V)	$2 \operatorname{MnO}_{2}(s) + 2 \operatorname{NH}_{4}^{+}(aq) + 2 e^{-} \rightarrow \operatorname{Mn}_{2}O_{3}(s) + 2 \operatorname{NH}_{3}(aq) + \operatorname{H}_{2}O(l)$ Zn(s) $\rightarrow \operatorname{Zn}^{2+}(aq) + 2 e^{-}$	 inexpensive, portable, many sizes flashlights, radios, many other consumer items
	alkaline dry cell (1.5 V)	$2 \text{ MnO}_2(s) + \text{H}_2\text{O}(l) + 2 e^- \rightarrow \text{Mn}_2\text{O}_3(s) + 2 \text{ OH}^-(aq)$ Zn(s) + 2 OH ⁻ (aq) \rightarrow ZnO(s) + H ₂ O(l) + 2 e ⁻	 longer shelf life; higher currents for longer periods compared with dry cell same uses as dry cell
	mercury cell (1.35 V)	$\begin{array}{rl} HgO(s) + H_2O(l) + 2 e^- \rightarrow Hg(l) + 2 OH^-(aq) \\ \\ Zn(s) + 2 OH^-(aq) \rightarrow ZnO(s) + H_2O(l) + 2 e^- \end{array}$	 small cell; constant voltage during its active life hearing aids, watches
secondary cells	Ni-Cd cell (1.25 V)	$\begin{array}{l} 2 \operatorname{NiO}(\operatorname{OH})(s) + 2 \operatorname{H}_2 \operatorname{O}(1) + 2 \operatorname{e}^- & \rightarrow 2 \operatorname{Ni}(\operatorname{OH})_2(s) + 2 \operatorname{OH}^-(\operatorname{aq}) \\ \\ \operatorname{Cd}(s) + 2 \operatorname{OH}^-(\operatorname{aq}) & \rightarrow \operatorname{Cd}(\operatorname{OH})_2(s) + 2 \operatorname{e}^- \end{array}$	 can be completely sealed; lightweight but expensive all normal dry cell uses, as well as power tools, shavers, portable computers
	lead-acid cell (2.0 V)	$\begin{array}{l} PbO_2(s) + 4 H^+(aq) + SO_4^{\ 2^-}(aq) + 2 e^- & \rightarrow PbSO_4(s) + 2 H_2O(l) \\ \\ Pb(s) + SO_4^{\ 2^-}(aq) & \rightarrow PbSO_4(s) + 2 e^- \end{array}$	very large currents; reliable for many rechargesall vehicles
fuel cells	hydrogen- oxygen cell (1.2 V)	$\begin{array}{l} O_2(g) + 2 H_2O(l) + 4 e^- \rightarrow 4 OH^-(aq) \\ 2 H_2(g) + 4 OH^-(aq) \rightarrow 4 H_2O(l) + 4 e^- \end{array}$	 lightweight; high efficiency; can be adapted to use hydrogen-rich fuels vehicles and space shuttle
	aluminium-air cell (2V)	$\begin{array}{rcl} 3 \ O_2(g) + 6 \ H_2O(l) + 12 \ e^- & \rightarrow & 12 \ OH^-(aq) \\ & 4 \ Al(s) \ \rightarrow & 4 \ Al^{3+}(aq) + & 12 \ e^- \end{array}$	 very high energy density; made from readily available aluminium alloys designed for electric cars


Table 2 Primary, Secondary, and Fuel Cells

Instructional Master Voltaic Cell Design

Figure 1

(a) A salt bridge is a U-shaped tube containing an inert (unreactive) aqueous electrolyte such as sodium sulfate.(b) An unglazed porcelain (porous) cup containing one electrolyte sits in a container of a second electrolyte.

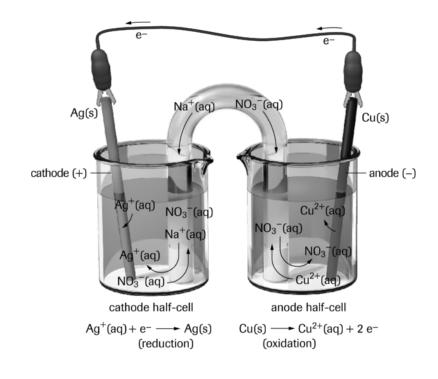
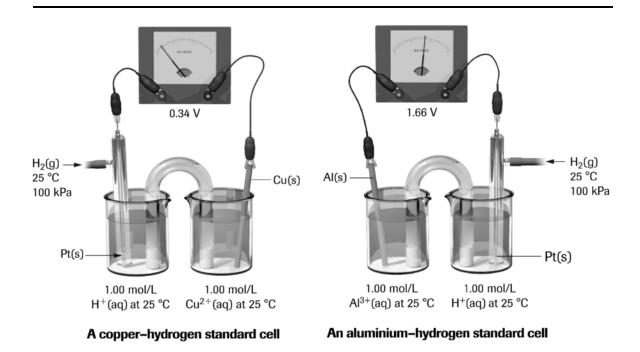


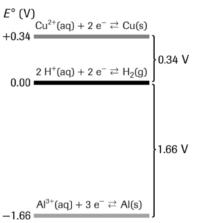
Figure 2

Each electrode is in its own electrolyte, forming a half-cell. The two half-cells are connected by a salt bridge (containing $NaNO_3(aq)$) and by an external wire to make a complete circuit.

Table 1 Evidence and Interpretations of the Silver-Copper Cell

Evidence	Interpretation
The copper electrode decreases in size and the intensity of the blue colour of the electrolyte increases.	Oxidation of copper metal is occurring: $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$ blue
The silver electrode increases in size as long, silver-coloured crystals grow.	Reduction of silver ions is occurring: Ag ⁺ (aq) + e ⁻ \rightarrow Ag(s)
A blue colour slowly moves up the U-tube from the copper half-cell to the silver half-cell.	Copper(II) ions (cations) move toward the cathode.
An ammeter shows that the electric current flows along a wire between the copper electrode and the silver electrode.	Electrons move through the wire from the copper electrode to the silver electrode.
A voltmeter indicates that the silver electrode cathode (positive) and the copper electrode is the anode (negative).	Electrons have a tendency to leave the copper half-cell and enter the silver half-cell.




Figure 3

A theoretical interpretation of the silver-copper cell

Instructional Master

Measuring *E*_r°

Figure 11

Measurements of standard cell potentials show that the reduction potential of $Cu^{2^+}(aq)$ is 0.34 V greater than that of H⁺(aq), which is 1.66 V greater than that of Al³⁺(aq). If you set up a standard cell using copper and aluminium, what would be the cell potential, *E*°cell. (Answer: 2.00 V)

Instructional Master Analyzing Standard Cells

SUMMARY Rules for Analyzing Standard Cells

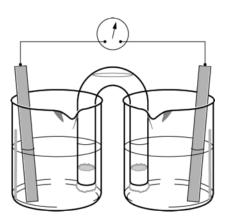
You can analyze a standard cell knowing the contents of both half-cells using one or more of the following steps:

- Determine which electrode is the cathode. The cathode is the electrode where the strongest oxidizing agent present in the cell reacts, i.e., the oxidizing agent that is closest to the top on the left side of the redox table. If required, copy the reduction half-reaction for the strongest oxidizing agent and its reduction potential.
- Determine which electrode is the anode. The anode is the electrode where the strongest reducing agent present in the cell reacts, i.e., the reducing agent that is closest to the bottom on the right side of the redox table. If required, copy the oxidation half-reaction (reverse the half-reaction by reading from right to left) for the strongest reducing agent and its reduction potential.
- Determine the overall cell reaction. Balance the electrons for the two half-reaction equations (but do not change the E°_{r}) and add the half-reaction equations.
- Determine the standard cell potential, E°_{cell} , using the equation:

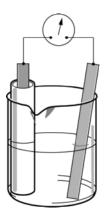
$$E^{\circ}_{cell} = E^{\circ}_{r} - E^{\circ}_{r}_{anode}$$

SUMMARY Standard Cell Potential

- A standard cell is one in which all entities shown in the half-reaction equation are present and at SATP. The concentration of aqueous entities is 1.0 mol/L.
- The standard cell potential, E°_{cell} , is the maximum electric potential difference between the cathode and anode of a voltaic cell at standard conditions.


$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{r}} - E^{\circ}_{\text{r}}_{\text{anode}}$$

- A positive standard cell potential ($E_{cell}^{\circ} > 0$) indicates that the overall cell reaction is spontaneous.
- The standard reduction potential E°_{r} , represents the ability of a standard half-cell to attract electrons, relative to the reference half-cell.
- The reference half-cell is $Pt(s) \mid H_2(g) \mid H^+(aq)$, (refer to page 627). It has, by definition, a standard reduction potential of exactly zero volts.

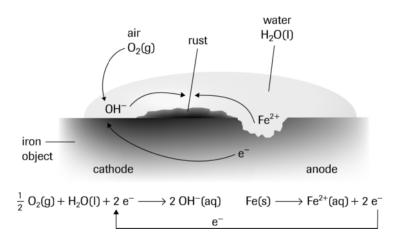

Student WorksheetLSM 14.2GVoltaic Cells, Extra Exercises

For each of the following cells, use the given cell notation to identify the strongest oxidizing and reducing agents. Write chemical equations to represent the cathode, anode, and net cell reactions. Label electrodes, electrolytes, electron flow, and ion movement. Predict the cell potential.

1. $Cd(s) | Cd(NO_3)_2(aq) || AgNO3(aq) | Ag(s)$

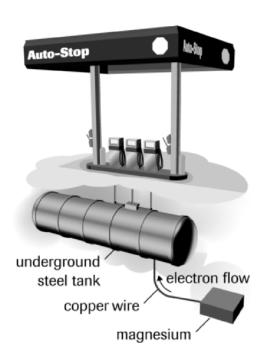
2. $Pt(s) | IO_3^{-}(aq), H^{+}(aq) || Zn^{2+}(aq) | Zn(s)$

- 1. Assume that the reference half-cell is changed to a standard mercury-mercury(II) half-cell.
 - (a) What would be the reduction potential of a standard chlorine half-cell?
 - (b) What would be the reduction potential of a standard nickel half-cell?
 - (c) What would be the net cell potential of a standard chlorine–nickel cell?
 - (d) Why is the answer to part c the same as the answer obtained using the standard hydrogen half-cell as the reference?
- 2. For each of the following standard cells, write the cell notation, label electrodes, and determine the cell potential.
 - (a) cobalt-hydrogen standard cell
 - (b) zinc–aluminium standard cell
 - (c) tin(IV)-zinc standard cell
- 3. For each of the following cell notations, write the cathode, anode, and net cell reaction equations and calculate the cell potential.
 - (a) $Pb(s) | Pb^{2+}(aq) || Ni^{2+}(aq) | Ni(s)$


(b) $Pt(s) | SO_4^{2-}(aq), H^+(aq), H_2SO_3(aq) || Ag^+(aq) | Ag(s)$

(c) $Cd(s) | Cd^{2+}(aq) || ClO_4^{-}(aq), H^{+}(aq), Cl^{-}(aq) | C(s)$

4. Use the standard cell described below to determine the standard reduction potential of the gallium half-cell.


 $Cu(s) | Cu²⁺(aq) || Ga³⁺(aq) | Ga(s) \quad \Delta E^{\circ} = +0.90 V$ cathode anode

Instructional Master Corrosion of Iron

Figure 14

The corrosion of iron is a small electrochemical cell with iron oxidation at one location (the anode) and oxygen reduction at another location (the cathode).

Figure 16

Corrosion of iron involves the oxidation of iron at the anode of a cell. If the iron is attached directly or connected electrically to a metal that is more easily oxidized (a sacrificial anode), then a spontaneous cell develops in which iron is the cathode. The electrolyte of the cell is the moisture in the ground.

	Voltaic cell	Electrolytic cell
spontaneity	spontaneous reaction	nonspontaneous reaction
standard cell potential, <i>E°_{cell}</i>	positive	negative
cathode	 strongest oxidizing agent present undergoes a <i>reduction</i> positive electrode 	 strongest oxidizing agent present undergoes a <i>reduction</i> negative electrode
anode	 strongest reducing agent present undergoes an <i>oxidation</i> negative electrode 	 strongest reducing agent present undergoes an <i>oxidation</i> positive electrode
direction of electron movement	anode → cathode	anode → cathode
direction of ion movement	anions \rightarrow anode cations \rightarrow cathode	anions \rightarrow anode cations \rightarrow cathode

 Table 1
 Comparing Electrochemical Cells: Voltaic and Electrolytic

SUMMARY Procedure for Analyzing Electrolytic Cells

The procedure for analyzing electrolytic cells is essentially the same as for voltaic cells.

- Use the redox table (Appendix I) to identify the strongest oxidizing and reducing agents present. (Do not forget to consider water for aqueous electrolytes.)
- Write equations for the reduction (cathode) and oxidation (anode) half-reactions. Include the reduction potentials if required.
- Balance the electrons and write the net cell reaction including the cell potential.

 $E^{\circ}_{cell} = E^{\circ}_{r} - E^{\circ}_{r}_{r}$ cathode anode

- If required, state the minimum electric potential (voltage) to force the reaction to occur. (The minimum voltage is the absolute value of E°_{cell} .)
- If a diagram is requested, use the general outline shown in **Figure 6** and add specific labels for chemical entities.

COMMUNICATION example 2

An electrolytic cell is set up with a power supply connected to two nickel electrodes immersed in an aqueous solution containing cadmium nitrate and zinc nitrate. Predict the equations for the initial reaction at each electrode and the net cell reaction. Calculate the minimum voltage that must be applied to make the reaction occur.

Solution

SRA SOA Ni(s), H₂O(l), Cd²⁺(aq), NO₃⁻(aq), Zn²⁺(aq) cathode: Cd²⁺(aq) + 2 e⁻ \rightarrow Cd(s) anode: Ni(s) \rightarrow Ni²⁺(aq) + 2 e⁻ net: Cd²⁺(aq) + Ni(s) \rightarrow Cd(s) + Ni²⁺(aq) $E^{\circ}_{r} = -0.26 \text{ V}$ $E^{\circ}_{r} = -0.26 \text{ V}$ $E^{\circ}_{r} = -0.26 \text{ V}$ = -0.40 V - (-0.26 V)= -0.14 V

According to the redox table, a minimum voltage of 0.14 V is required.

1. Write the equations for the anode, cathode, and net reactions for the electrolysis of molten aluminium oxide. One half-reaction will involve conversion of liquid oxide ions into oxygen gas.

2. Write equations for the anode, cathode, and net reactions for the electrolysis of molten potassium bromide.

- 3. For the following electrolytic cells, write equations for half-reactions and the net cell reaction, and calculate the minimum electrical potential difference that would be required to cause the electrolysis to occur.
 - (a) an aqueous solution of nickel (II) chloride is electrolyzed
 - (b) an aqueous solution of potassium sulfate is electrolyzed
 - (c) an aqueous solution of lead (II) nitrate is electrolyzed

$F = 9.65 \times 10^4 \frac{\text{C}}{\text{mol e}^-}$ $n_{\text{e}^-} = \frac{It}{F}$

COMMUNICATION example 1

Convert a current of 1.74 A for 10.0 min into an amount of electrons.

Solution

$$t = 10.0 \text{ prim} \times \frac{60 \text{ s}}{1 \text{ prim}} = 600 \text{ s}$$
$$n_{e^-} = (1.74 \frac{\cancel{C}}{\cancel{s}} \times 600 \text{ s}) \times \frac{1 \text{ mol}}{9.65 \times 10^4 \text{ C}}$$
$$= 0.0108 \text{ mol}$$

According to Faraday's law, the amount of electrons transferred is 0.0108 mol or 10.8 mmol.

COMMUNICATION example 2

How long, in minutes, will it take a current of 3.50 A to transfer 0.100 mol of electrons?

Solution

$$t = (0.100 \text{ mol} \times 9.65 \times 10^4 \frac{\text{C}}{\text{mol}}) \times \frac{1 \text{ s}}{3.50 \text{ C}}$$
$$= 2.76 \times 10^3 \text{ s} \times \frac{1 \text{ min}}{0 \text{ s}}$$

= 46.0 min

According to Faraday's law, it would require 46.0 min to transfer 0.100 mol e^- using a current of 3.50 A.

6

SUMMARY Procedure for Half-Cell Stoichiometry

- **Step 1:** Write the balanced equation for the half-cell reaction of the substance produced or consumed. List the measurements and conversion factors for the given and required entities.
- **Step 2:** Convert the given measurements to an amount in moles by using the appropriate conversion factor (M, c, F).
- **Step 3:** Calculate the amount of the required substance by using the mole ratio from the half-reaction equation.
- **Step 4:** Convert the calculated amount to the final quantity by using the appropriate conversion factor (M, c, F).

COMMUNICATION example 3

Silver is deposited on objects (**Figure 3**) in a silver electroplating cell. If 0.175 g of silver is to be deposited from a silver cyanide solution in a time of 10.0 min, predict the current required.

Solution

 $Ag^+(aq) + e^- \rightarrow$ Ag(s) 10.0 min 0.175 g 107.87 g/mol Ι $9.65 imes10^4$ C/mol $n_{\rm Ag} = 0.175 \ {\rm g} \times \frac{1 \ {\rm mol}}{107.87 \ {\rm g}}$ $= 1.62 \times 10^{-3}$ mol $n_{\rm e^-} = 1.62 \times 10^{-3} \, {\rm mol} \times \frac{1}{1}$ $= 1.62 \times 10^{-3}$ mol $I = \frac{1.62 \times 10^{-3} \text{ pxol} \times 9.65 \times 10^{4} \frac{\text{C}}{\text{pxol}}}{10.0 \text{ pxm} \times \frac{60 \text{ s}}{\text{pxon}}}$ = 0.261 C/s or $I = 0.175 \text{ gAg} \times \frac{1 \text{ mot Ag}}{107.87 \text{ gAg}} \times \frac{1 \text{ mot e}^-}{1 \text{ mot Ag}} \times \frac{9.65 \times 10^4 \text{ C e}^-}{1 \text{ mol e}^-} \times \frac{1}{10 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ s}}$ = 0.261 C/s

According to the stoichiometry and Faraday's law, the current required to plate 0.175 g of silver in 10.0 min is 0.261 A.

Student Worksheet LSM 14.4C Stoichiometry of Cell Reactions, Extra Exercises

1. A student wishes to set up an electrolytic cell to plate copper onto a belt buckle. Predict the length of time it will take to plate out 2.5 g of copper from a copper(II) nitrate solution using a 2.5 A current. At which electrode should the buckle be attached?

2. Determine the mass of chlorine produced when a 200 A current flows for 24.0 h through a cell containing molten sodium chloride (a Downs cell). At which electrode is the chlorine produced?

3. How long would it take a 500 A current to produce 1.00 kg of aluminium from aluminium oxide dissolved in molten cryolite (Hall–Héroult cell)?

4. A trophy company is setting up a nickel-plating cell using an electrolyte containing nickel(II) ions. Predict the current required to produce nickel metal at the rate of 5.00 g/min.

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

5	
define anode, cathode, anion,	
cation, salt bridge/porous cup,	
electrolyte, voltaic cell, and	
electrolytic cell (14.2, 14.3)	
predict and write the half-reaction	
equation that occurs at each	
electrode in an electrochemical cell	
(14.2, 14.3, 14.4)	
explain that the values of standard	
reduction potential are all relative to	
E_{r}° = 0.00 V set for the hydrogen	
electrode at standard conditions	
(14.2)	
calculate the standard cell potential	
for electrochemical cells (14.2, 14.3)	
predict the spontaneity of redox	
reactions based on standard cell	
potentials (14.2, 14.3)	
identify the similarities and	
differences between a voltaic cell	
and an electrolytic cell (14.3)	
recognize that predicted reactions	
do not always occur (14.3)	
calculate mass, amounts, current,	
and time in single voltaic and	
electrolytic cells by applying	
Faraday's law and stoichiometry	
(14.4)	

STS

state examples of science leading technology and technology leading science (14.1, 14.3)	
recognize the values and limitations of technological products and processes (14.1, 14.3)	
describe the interactions of science and technology (14.1, 14.2, 14.3)	

Skills

SKIIIS		
initiating and planning	design an experiment, including a labelled diagram, to test predictions for reactions occurring in electrochemical cells (14.1, 14.2, 14.3) describe procedures for safe handling, storage, and disposal of materials used in the laboratory (14.1,	
	14.2) develop a plan to build a cell (battery) using a trial-and-error procedure (14.1)	
performing and recording	construct and observe electrochemical cells (14.1, 14.2, 14.3)	
	investigate the issue of disposal of batteries (14.1); compile and display	
	information about electrochemical cells (all sections)	
analyzing and interpreting	identify the products of electrochemical cells (all sections)	
	compare predictions with observations (all sections) identify the limitations	
	of evidence collected (14.1, 14.2, 14.3) explain discrepancies	
	between predicted and measured cell potentials (14.2, 14.3)	
	assess the practicalities of different cell designs (14.1)	
	evaluate experimental designs for cells (14.1, 14.2, 14.3)	

comm	work collaboratively in	
uni-	addressing problems	
cation	and use appropriate SI	
and	notation and significant	
team-	digits (all sections)	
work	select and integrate	
	information from	
	various sources about	
	technological	
	applications of cells (all	
	sections)	

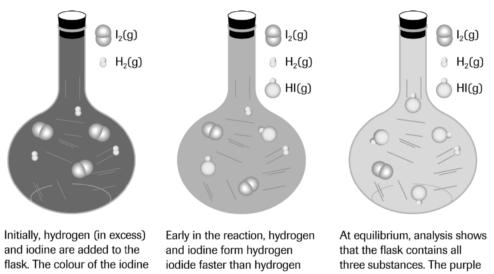
Key Terms

4.1	electrode	
	electrolyte	
	electric potential difference	
	electric current	
	fuel cell	
14.2	porous boundary	
	half-cell	
	voltaic cell	
	cathode	
	anode	
	inert electrode	
	standard cell	
	standard cell potential	
	standard reduction	
	potential	
	reference half-cell	
	corrosion	
	cathodic protection	
14.3	electrolytic cell	
	electrolysis	
14.4	Faraday's law	
	Faraday constant	

Key STS

appreciate the relationship of	
scientific knowledge and	
technological development in the	
applications of electrochemical	
cells (Exploration: A Simple	
Electric Cell; Investigation 14.1:	
Designing an Electric Cell; WA:	
Hydrogen: Wonderfuel or Hype?;	
CS: The Ballard Fuel Cell)	
give examples of the use of	
technology to solve practical	
problems related to corrosion	
(<i>MI: Home Corrosion Experiment;</i>	
WA: Galvanizing Steel)	

LSM 14.CS (cont'd)

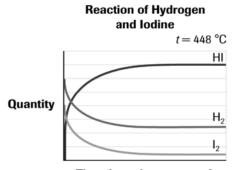

investigate the economic importance of electrochemical cells (<i>WA: Lewis Urry; CS: The</i> <i>Ballard Fuel Cell</i>)	
research a variety of careers (CC: Materials Engineering Technologist; WA: Lewis Urry; CC: Chemical Technologist)	

Key Terms

design, construct, observe, analyze, and evaluate an electric cell from a technological perspective and electrochemical cells from a scientific perspective (<i>Exploration: A Simple Electric</i> <i>Cell; Investigation 14.1:</i> <i>Designing an Electric Cell;</i> <i>Investigation 14.2: A Voltaic Cell</i> (<i>Demonstration</i>); WA: Voltaic <i>Cells Under Standard</i> <i>Conditions; Investigation 14.3:</i> <i>Testing Voltaic Cells;</i> <i>Investigation 14.4: A Potassium</i> <i>Iodide Electrolytic Cell; 14.5:</i> <i>Electrolysis (Demonstration</i>)	
create a presentation in a variety of formats of scientific and technological information about electrochemical cells (<i>Exploration: A Simple Electric</i> <i>Cell; Investigation 14.1:</i> <i>Designing an Electric Cell; CS:</i> <i>The Ballard Fuel Cell;</i> <i>Investigation 14.2: A Voltaic Cell</i> (<i>Demonstration</i>); WA: Voltaic <i>Cells Under Standard</i> <i>Conditions; Investigation 14.3:</i> <i>Testing Voltaic Cells;</i> <i>Investigation 14.4: A Potassium</i> <i>Iodide Electrolytic Cell; 14.5:</i> <i>Electrolysis (Demonstration)</i>	
investigate issues related to consumer, commercial, and industrial cells (WA: Hydrogen: Wonderfuel or Hype? WA: Lewis Urry; CS: The Ballard Fuel Cell; WA: Electrolytic Cell Stoichiometry)	

Instructional Master

The Hydrogen–lodine Reaction System


vapour is the only easily observable property.

iodide forms hydrogen and iodine. Overall, the amount of iodine decreases, so the colour of the flask contents appears to lighten. Both hydrogen and hydrogen iodide are colourless.

colour shows that some iodine remains. The constancy of the colour is evidence that equilibrium exists. Forward and reverse reactions are occurring at equal rates.

Figure 4

When hydrogen and iodine are added to the flask, the colour of the iodine vapour is the only easily observable (empirical) property. An equilibrium equation describes this evidence theoretically. $H_2(g) + I_2(g) \rightarrow 2 HI(g), t = 448 \ ^{\circ}C$

Time (reaction progress)

Figure 5

The graph of the guantity of each substance against time shows that the rate of reaction of the reactants decreases as the number of reactant molecules decreases, and the rate at which the product changes back to reactants increases as the number of product molecules increases. These two rates must become equal at some point, after which the quantity of each substance present will not change.

SUMMARY Writing Equilibrium Law Expressions

Write an equilibrium law expression based on a balanced equation for the reaction system. Use single whole-number coefficients, written in net ionic form, and ignore concentrations of pure solid or liquid phases:

If: $aA + bB \rightleftharpoons cC + dD$

then:
$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

An equilibrium constant value

- always depends on the system temperature
- is independent of the reagent concentrations
- is independent of any catalyst present
- is independent of the time taken to reach equilibrium
- is normally stated as a numerical value, ignoring any units
- is greater, the more the system favours the formation of products

- 1. For each of the following, write the chemical reaction equation with appropriate equilibrium arrows.
 - (a) pH measurements indicate that acetic acid in vinegar is approximately 1% ionized into hydrogen ions and acetate ions.
 - (b) Quantitative analysis of the reaction of sodium sulfate and calcium chloride solutions shows that the products are favoured.
 - (c) Aluminium sulfate solution reacts quantitatively with a sodium hydroxide solution.
- 2. Chlorine and carbon monoxide gases are mixed in a 1.00 L container and the following equilibrium is established.

 $CO(g) + Cl_2(g) \leftrightarrows COCl_2(g)$

Initially, 1.50 mol of chlorine was present with 2.55 mol of carbon monoxide. At equilibrium, 0.80 mol of $COCl_2(g)$ was found.

Concentration	[] (mol/L)	[] (mol/L)	[] (mol/L)
Initial			
Change			
Equilibrium			

(a) Create an ICE table and calculate the percent reaction of chlorine.

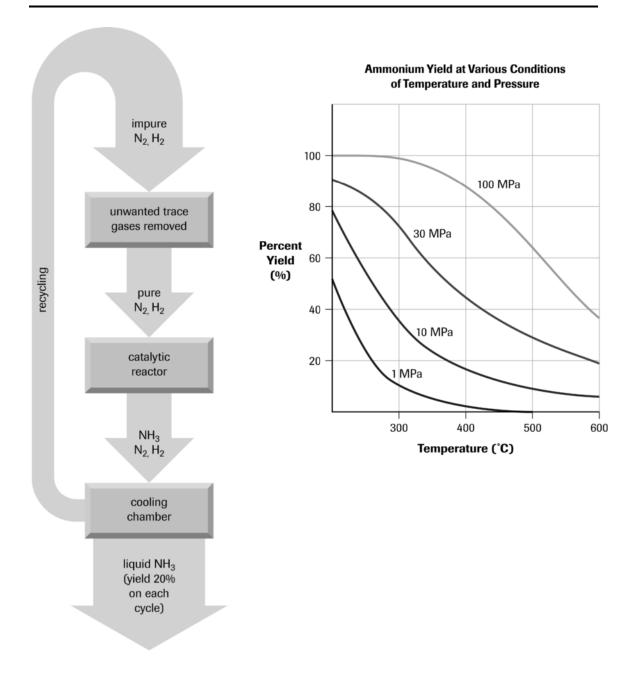
(b) Write the equilibrium law for this reaction.

(c) At equilibrium, 1.75 mol of carbon monoxide and 0.70 mol of chlorine were present. Calculate the equilibrium constant.

LSM 15.1D (cont'd)

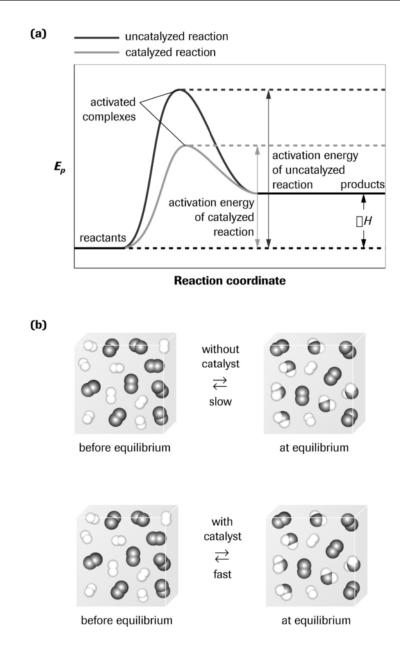
Write the equilibrium law for each of the following chemical reaction equations.
 (a) 2 SO₂(g) + O₂(g) ≒ 2 SO₃(g)

(b) $2 \operatorname{NO}_2(g) \leftrightarrows 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$


(c) $N_2(g) + 3 H_2(g) \leftrightarrows 2 N H_3(g)$

- 4. In an experiment at a high temperature, 0.500 mol/L of hydrogen bromide gas is placed into a sealed container and decomposes into hydrogen and bromine gases.(a) Write the equilibrium equation and law for this reaction.
 - (b) The equilibrium concentration for $Br_2(g)$ in this system is found from calorimetry to be 0.130 mol/L. Use an ICE table to help calculate the equilibrium constant.

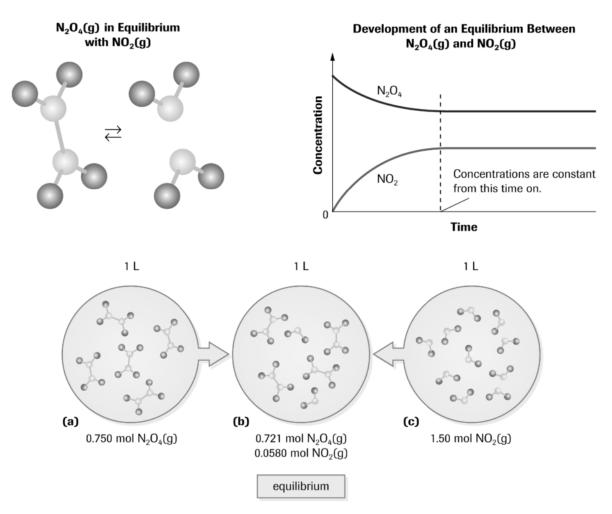
Concentration	[] (mol/L)	[] (mol/L)	[] (mol/L)
Initial			
Change			
Equilibrium			


The Production of Ammonia by the Haber Process

Instructional Master

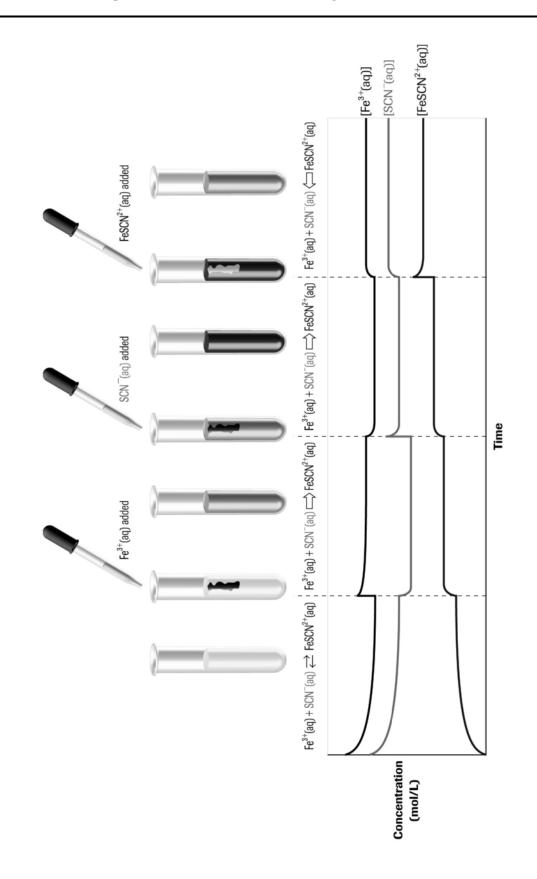
Catalysts and Equilibrium

Instructional Master


(a) A catalyst reduces the activation energy by the same amount whether the reaction proceeds to the right or to the left.(b) It does not affect the relative concentrations of entities.

Instructional Master LSM 15.2D Variables Affecting Chemical Equilibria

SUMMARY Variables Affecting Chemical Equilibria


Variables	Imposed Change	Response of System
concentration	increase	shifts to consume some of the added reactant or product
	decrease	shifts to replace some of the removed reactant or product
temperature	increase	shifts to absorb some of the added energy
	decrease	shifts to replace some of the removed energy
volume (gaseous systems only)	increase (decrease in pressure)	shifts toward the side with the larger total chemical amount of gaseous entities
	decrease (increase in pressure)	shifts toward the side with the smaller total chemical amount of gaseous entities

Instructional Master LSM 15.2F $N_2O_4(g)$ in Equilibrium with $NO_2(g)$

The same dynamic equilibrium composition is reached whether we start from pure $N_2O_4(g)$, pure $NO_2(g)$, or a mixture of the two, provided that environment, system and total mass remain the same.

Disturbing the Iron(III)–Thiocyanate Equilibrium

- 1. Nitrogen monoxide, a major air pollutant, is formed in automobile engines from the endothermic reaction of nitrogen and oxygen gases.
 - (a) Write the equilibrium reaction equation including the term "energy" in the equation.
 - (b) Describe the direction of the equilibrium shift if the concentration of oxygen is increased.
 - (c) Describe the direction of the equilibrium shift if the pressure is increased.
 - (d) Gasoline burns better at higher temperatures. What are some disadvantages of the operation of automobile engines at higher temperatures?
- 2. In a sealed container, nitrogen monoxide and oxygen gases are in equilibrium with nitrogen dioxide gas. The reaction of nitrogen monoxide and oxygen is exothermic.

 $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \leftrightarrows 2 \operatorname{NO}_2(g) + \text{energy}$

Predict the equilibrium shift when the following changes are made.

- (a) the temperature is decreased
- (b) the concentration of NO(g) is decreased
- (c) the concentration of $NO_2(g)$ is increased
- (d) the volume of the system is decreased
- 3. The equilibrium of the iron(III)–thiocyanate system is convenient to study.

$Fe^{3+}(aq)$	+	SCN ⁻ (aq)	$\stackrel{\longleftarrow}{\longrightarrow}$	FeSCN ²⁺ (aq)
almost colourless		colourless		red
Predict the colour cha	nge in	the equilibrium m	ixture w	hen each of the following
changes is made.				

- (a) A crystal of KSCN(s) is added to the system.
- (b) A crystal of $CeCl_3(s)$ is added to the system.
- (c) A crystal of NaOH(s) is added to the system.

Student Worksheet Solutions LSM 15.2K Solutions for Le Châtelier's Principle, Extra Exercises

- 1. Nitrogen monoxide, a major air pollutant, is formed in automobile engines from the endothermic reaction of nitrogen and oxygen gases.
 - (a) Write the equilibrium reaction equation including the term "energy" in the equation.

 $N_2(g) + O_2(g) + energy \leftrightarrows 2 NO(g)$

(b) Describe the direction of the equilibrium shift if the concentration of oxygen is increased.

The equilibrium shifts to the right.

- (c) Describe the direction of the equilibrium shift if the pressure is increased.
 There will be no shift in the equilibrium because the number of gas molecules is the same on both sides of the equilibrium equation.
- (d) Gasoline burns better at higher temperatures. What are some disadvantages of the operation of automobile engines at higher temperatures?
 At high temperatures, the equilibrium shifts to the right, producing more of the pollutant nitrogen monoxide. There may also be additional technical and safety problems as the temperature is increased.
- 2. In a sealed container, nitrogen monoxide and oxygen gases are in equilibrium with nitrogen dioxide gas. The reaction of nitrogen monoxide and oxygen is exothermic.

 $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \leftrightarrows 2 \operatorname{NO}_2(g) + \text{energy}$

Predict the equilibrium shift when the following changes are made.

- (a) the temperature is decreased
 - The equilibrium shifts to the right.
- (b) the concentration of $NO_{(g)}$ is decreased The equilibrium shifts to the left.
- (c) the concentration of $NO_{2(g)}$ is increased The equilibrium shifts to the left.
- (d) the volume of the system is decreased The equilibrium shifts to the right.
- 3. The equilibrium of the iron(III)-thiocyanate system is convenient to study.

 $Fe^{3+}(aq)$ + $SCN^{-}(aq)$ \Leftrightarrow $FeSCN^{2+}(aq)$

almost colourless colourless red Predict the colour change in the equilibrium mixture when each of the following changes is made.

- (a) A crystal of KSCN(s) is added to the system.
 - The red colour becomes more intense as the equilibrium shifts to the right.
- (b) A crystal of $CeCl_3(s)$ is added to the system.

The red colour becomes more intense as the equilibrium shifts to the right. (c) A crystal of NaOH(s) is added to the system.

The red colour becomes less intense as the equilibrium shifts to the left. (Iron(III) ions precipitate as iron(III) hydroxide.) Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

define equilibrium and state the criteria that apply to a chemical system in equilibrium (15.1)	
identify, write, and interpret chemical equations for systems at equilibrium (15.1, 15.2)	
predict, qualitatively, using Le Châtelier's principle, shifts in equilibrium caused by changes in temperature, pressure, volume, concentration, or the addition of a catalyst, and describe how these changes affect the equilibrium constant (15.2)	
define <i>Kc</i> and write equilibrium law expressions for given chemical equations, using lowest whole- number coefficients (15.1)	
calculate equilibrium constants and concentrations for homogeneous systems when concentrations at equilibrium are known, when initial concentrations and one equilibrium concentration are known, and when the equilibrium constant and one equilibrium concentration are known (15.1)	

STS

state that the goal of science is	
knowledge about the natural world	
(15.1, 15.2)	
list the characteristics of empirical	
and theoretical knowledge (15.2)	
state that a goal of technology is to	
solve practical problems (15.2)	

Skills

initiating and planning	state that a goal of technology is to solve practical problems (15.2)	
	design an experiment to show equilibrium shifts (15.2)	
	describe procedures for safe handling, storage, and disposal of materials used in the laboratory (15.1, 15.2)	
performing and recording	perform an experiment to test, qualitatively, predictions of equilibrium shifts (15.2)	
analyzing and interpreting	write the equilibrium law expression for a given equation (15.1)	
	analyze, qualitatively, the changes in concentrations of reactants and products after an equilibrium shift (15.2)	
	interpret data from a graph to determine when equilibrium is established, and determine the cause of a stress on the system (15.2)	
communi- cation and teamwork	work collaboratively in addressing problems and communicate effectively (15.1, 15.2)	

LSM 15.CS (cont'd)

Key Terms

15.1	closed system	
	equilibrium	
	phase equilibrium	
	solubility equilibrium	
	chemical reaction	
	equilibrium	
	dynamic equilibrium theory	
	forward reaction	
	reverse reaction	
	ICE table	
	equilibrium constant, Kc	
	equilibrium law	
15.2	Le Châtelier's principle	
	equilibrium shift	


Key STS

recognize chemical equilibria in the natural world and in household products (DYK: Diabetes: Blood Sugar Equilibrium; Section 15.2, Fig.5; Biology Connection: CO ₂ Transport; WA: WQ—Poison Afloat; Section 15.2 Question 8; Chapter 15 Review questions 14, 24, 40, 43, 44)	
appreciate how chemical equilibrium is used to control important industrial reactions (Section 15.2—nitric acid, hydrochloric acid, sulfur trioxide, ammonia (the Haber process), methanol; CC: Chemical Process Engineer; CS: Urea Production in Alberta; Section 15.2 Questions 1, 2, 6, 7; Chapter 15 Review questions 38, 39, 41, 42)	
appreciate how equilibrium theories developed (Section 15.1; DYK: Lavoiser and Closed Systems; LE 15.A: The Synthesis of an Equilibrium Law; DYK: Related Interests; Section 15.1 Question 11; Section 15.2; Inv.15.2; Equilibrium Shifts (Demonstration); Inv.15.3: Testing Le Châtelier's Principle)	

Key Skills

express the equilibrium law and calculate equilibrium constants from experimental data (<i>LE 15.A: The</i> <i>Synthesis of an Equilibrium Law;</i> <i>LE15.B: Determining an Equilibrium</i> <i>Constant; Section 15.1 Questions 5,</i> <i>6, 7, 8, 9; Chapter 15 Review</i> <i>questions 26, 28</i>)	
create ICE tables for quantity concentration <i>changes</i> in reactions (<i>Sample Problem 15.2; Section 15.1</i> <i>Questions 3, 6, 7, 8, 9, 10; Chapter</i> <i>15 Review question 10; Chapter 15</i> <i>Review questions 26, 27</i>)	
draw and interpret reaction progress graphs of concentration versus time for equilibrium reactions (Section 15.1 Question 3; Section 15.2; Section 15.2 Questions 4; Chapter 15 Review question 26)	

Instructional Master pH and Water Ionization

Figure 5 The pH scale

$$\begin{split} K_{\rm w} &= [{\rm H}_{3}{\rm O}^{+}({\rm aq})][{\rm OH}^{-}({\rm aq})] = 1.0 \times 10^{-14}\,({\rm mol/L})^{2} \\ {\rm pH} &= -{\rm log}[{\rm H}_{3}{\rm O}^{+}({\rm aq})] \quad {\rm pOH} = -{\rm log}[{\rm OH}^{-}({\rm aq})] \\ [{\rm H}_{3}{\rm O}^{+}({\rm aq})] &= 10^{-{\rm pH}} \quad [{\rm OH}^{-}({\rm aq})] = 10^{-{\rm pOH}} \\ {\rm pH} + {\rm pOH} = 14.00 \end{split}$$

Student Worksheet LSM 16.1C *K*_w, pH, and pOH Calculations, Extra Exercises

- 1. Calculate the [OH⁻(aq)] in limes which have a [H₃O⁺(aq)] of 1.3×10^{-2} mol/L.
- 2. Calculate the $[H_3O^+(aq)]$ in lemons which have a $[OH^-(aq)]$ of 2.0×10^{-12} mol/L.
- 3. A sodium hydroxide solution is prepared by dissolving 2.50 g to make 2.00 L of solution. Calculate the hydroxide and hydronium ion concentrations.
- 4. A 0.728 g sample of hydrogen chloride gas is dissolved in 200 mL of solution. Calculate the hydronium and hydroxide ion concentrations.
- 5. Vinegar has a hydronium ion concentration of 1.5×10^{-3} mol/L. Calculate the pH.
- 6. An ammonia solution has a pOH of 2.92. What is the concentration of hydroxide ions in the solution?
- 7. Calculate the pOH and pH of a solution made by dissolving 7.50 g of strontium hydroxide to make 500 mL of solution.

Substance	[H₃O [⁺] (aq)] (mol/L)	рН	[OH ⁻ (aq)] (mol/L)	рОН	Acidic, basic, or neutral
milk			3.2 × 10 ⁻⁴		
pure water		7.0			
blood	4.0 × 10 ⁻⁸				
cleaner				3.20	

8. Complete the following table. **Table 1** pH of Common Substances

Brønsted–Lowry Definitions and Predicting Reactions

SUMMARY Brønsted–Lowry Definitions

- An acid is a proton donor and a base is a proton acceptor, in a specific reaction.
- An acid–base reaction involves a single proton transfer from one entity (the acid) to another (the base).
- An amphiprotic entity (amphoteric substance) is one that acts as a Brønsted–Lowry acid in some reactions and as a Brønsted–Lowry base in other reactions.
- A conjugate acid–base pair consists of two entities with formulas that differ only by a proton.
- A strong acid has a very weak attraction for protons. A strong base has a very strong attraction for protons.
- The stronger an acid, the more weakly it holds its proton. The stronger a base, the more it attracts another proton.
- The stronger an acid, the weaker is its conjugate base. The stronger a base, the weaker is its conjugate acid.

SUMMARY A Five-Step Method for Predicting the Predominant Acid–Base Reaction

- 1. List all entities (ions, atoms, or molecules including H₂O(l)) initially present as they exist in aqueous solution. (Refer to Table 1, page 728.)
- 2. Identify and label all possible aqueous acids and bases, using the Brønsted–Lowry definitions.
- 3. Identify the strongest acid and the strongest base present, using the table of Relative Strengths of Aqueous Acids and Bases (Appendix I).
- 4. Write an equation showing a transfer of one proton from the strongest acid to the strongest base, and predict the conjugate base and the conjugate acid to be the products.
- 5. Predict the approximate position of the equilibrium, using the generalization developed in Lab Exercise 16.B on page 727, the Learning Tip on page 729, and the table of Relative Strengths of Aqueous Acids and Bases (Appendix I).

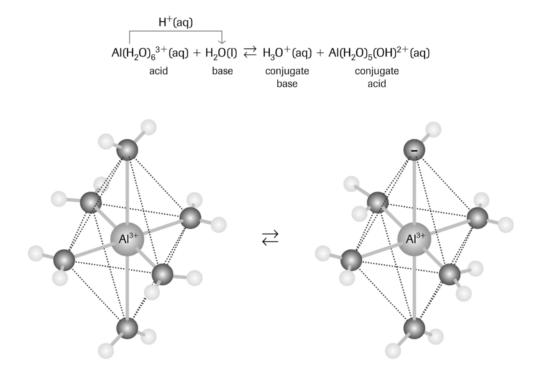
Student Worksheet LSM 16.2E Brønsted–Lowry Definitions, Extra Exercises

- 1. According to the Brønsted–Lowry concept, define an acid and a base in terms of an acid–base reaction.
- 2. (a) What is meant by an "acidic" solution?
 - (b) Does a Brønsted-Lowry acid have to form an acidic solution? Explain.
- There are many species that are classified as amphiprotic.
 (a) What does amphiprotic mean?
 - (b) What general type of species is amphiprotic?
- 4. HOOCCOO⁻(aq) + PO₄³⁻(aq) \leftrightarrows HPO₄²⁻(aq) + OOCCOO²⁻(aq)
 - (a) Label each species as A or B for both forward and reverse reactions.
 - (b) Identify all conjugate acid-base pairs.
 - (c) According to the Brønsted–Lowry concept, what determines the position of this equilibrium?
- 5. What is the generalization about the strength of an acid relative to its conjugate base?

Instructional Master LSM 16.3A Summary: Calculating the pH of a Solution of a Weak Monoprotic Acid, HA(aq), Given the Value of K_a

- **Step 1** List the major entities in solution.
- **Step 2** Write balanced equations for all entities that may produce $H^+(aq)$.
- **Step 3** Identify the dominant equilibrium, and write the equilibrium constant equation for the dominant equilibrium.
- **Step 4** Use the coefficients in the balanced equation of the dominant equilibrium to determine the changes in initial concentrations that will occur as the dominant reaction proceeds to equilibrium. Record all values in an ICE table.
- **Step 5** Substitute the equilibrium concentrations of all entities (from the "Equilibrium" line in the ICE table) into the acid ionization constant equation.
- **Step 6** Assume that $[HA]_{initial} x \doteq [HA]_{initial}$, but only if $\frac{[HA]_{initial}}{K_a} \ge 100$.
- **Step 7** Solve for *x* (which, for a monoprotic acid, equals $[H^+(aq)]$).
- **Step 8** Use the 5% rule to validate any assumption made in Step 6.
- **Step 9** Calculate pH from $[H^+(aq)]$ (the value of *x*).

Instructional Master


Summary: Calculating the pH of a Solution of a Weak Base, HB(aq), Given the Value of $K_{\rm b}$

- **Step 1** List the major entities in solution.
- **Step 2** Write balanced equations for all entities that may produce OH⁻(aq).
- **Step 3** Identify the dominant equilibrium, and write the equilibrium constant equation for the dominant equilibrium.
- **Step 4** Use the coefficients in the balanced equation of the dominant equilibrium to determine the changes in initial concentrations that will occur as the dominant reaction proceeds to equilibrium. Record all values in an ICE table.
- **Step 5** Substitute the equilibrium concentrations of all entities (from the "Equilibrium" line in the ICE table) into the base ionization constant equation.
- **Step 6** Assume that $[B]_{initial} x \doteq [B]_{initial}$, but only if $\frac{[B]_{initial}}{K_b} \ge 100$, where $[B]_{initial}$ represents the concentration of the base before the ionization process begins.
- **Step 7** Solve for *x* (which equals $[OH^{-}(aq)]$).
- **Step 8** Use the 5% rule to validate assumptions made in Step 6.
- **Step 9** Calculate pOH from $[OH^{-}(aq)]$ (the value of *x*).
- Step 10 Calculate the pH by substituting the value of pOH into the equation pH + pOH = 14.

Metal cation*	Ka	
Zr ⁴⁺ (aq)	2.1	
Sn ²⁺ (aq)	2.0×10^{-2}	
Fe ³⁺ (aq)	1.5×10^{-3}	
Cr ³⁺ (aq)	1.0×10^{-4}	
Al ³⁺ (aq)	9.8×10^{-6}	
Be ²⁺ (aq)	3.2×10^{-7}	
Fe ²⁺ (aq)	1.8×10^{-7}	
Pb ²⁺ (aq)	1.6 × 10 ⁻⁸	
Cu ²⁺ (aq)	1.0 × 10 ⁻⁸	

Table 1	$K_{\rm a}$ for	Some	Metal	Ions	at SATP
---------	-----------------	------	-------	------	---------

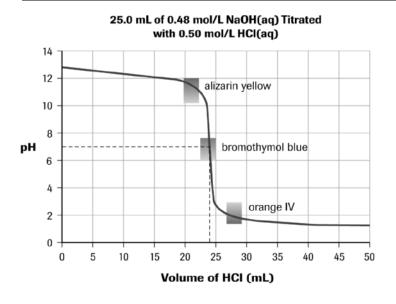
* The aqueous metal ion is a hydrated complex ion (e.g., $Cu(H_2O)_4^{2-}(aq)$). Aqueous ions of transition metals are usually written in a simplified form, without showing the number of water molecules present in the actual hydrated complex ion, as shown in the table.

 $AI(H_2O)_6^{3+}(aq) \rightleftharpoons AI(H_2O_5)_5(OH)^{2+}(aq)$

- 1. List three empirical properties that may be measured to distinguish among acids of different strengths.
- 2. Calculate the hydronium ion concentration and pH of a 0.10 mol/L solution of nitrous acid.
- 3. Calculate the hydrogen ion concentration and pH of a solution prepared by dissolving 10.70 g of ammonium chloride to make 2.00 L of solution.

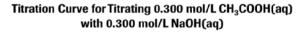
4. Use the percent reaction value to determine the mass of sodium hydrogen sulfate required to prepare 500 mL of solution with a pH of 1.57.

LSM 16.3D (cont'd)


- 5. A 0.80 mol/L solution of an unknown acid, HX(aq), has a pH of 3.75.(a) Calculate the percent reaction.
 - (b) Calculate the acid ionization constant.
- 6. Calculate the pH of a solution containing 0.25 mol/L of an acid with an acid ionization constant of 3.2×10^{-6} mol/L.

Instructional Master

Summary: Acid–Base Characteristics of Salts


Type of salt	Examples	Description	pН
cation of strong base and anion of strong acid	NaCl(aq), KNO ₃ (aq) Nal(aq)	does not hydrolyze as an acid or as a base	neutral
cation of strong base and anion of weak acid	NaC ₂ H ₃ O ₂ (aq) KF(aq)	anion hydrolyzes as a base; cation does not hydrolyze	basic
cation is conjugate acid of a weak base; anion of a strong acid	NH ₄ NO ₃ (aq) NH ₄ Cl(aq)	cation hydrolyzes as an acid; anion does not hydrolyze	acidic
cation is conjugate acid of a weak base; anion is conjugate base of a weak acid	$NH_4C_2H_3O_2(aq)$ $NH_4F(aq)$	cation hydrolyzes as an acid; anion hydrolyzes as a base	acidic if $K_a > K_b$ basic if $K_a < K_b$ neutral if $K_a = K_b$
cation is highly charged metal ion; anion of a strong acid	AICl ₃ (aq) Fel ₃ (aq)	hydrated cation hydrolyzes as an acid; anion does not hydrolyze	acidic
metal oxides	CuO(s)	solid state oxide ion reacts with water to form OH ⁻ (aq)	basic
nonmetal oxides	CO ₂ (aq)	compound reacts with water to form $H_3O^+(aq)$	acidic

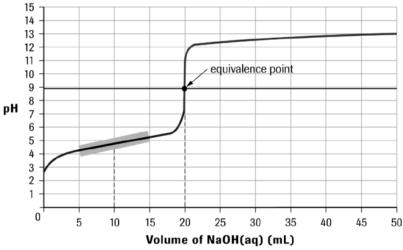

Instructional Master LSM 16.4A Titration Curves for Strong and Weak Acids

Figure 3

Alizarin yellow is not a suitable indicator because it will change colour long before the equivalence point of this strong acid-strong base reaction, which theoretically has a pH of exactly 7. Orange IV is also unsuitable: its colour change would occur too late. The pH at the middle of the colour change range for bromothymol blue is 6.8, which very closely matches the equivalence point pH; so, a titration analysis endpoint for this reaction, as indicated by bromothymol blue, should give accurate results.

Figure 15

The highlighted plateau shows an effective buffering region during this titration of aqueous acetic acid with sodium hydroxide. At the point halfway to the equivalence point, the solution is a 1:1 ratio mix of an acetic acid– acetate ion buffer.

SUMMARY pH Curve Reaction Information

Empirical pH curves provide a wealth of information:

- initial pH of sample solutions
- pH when excess titrant is added
- number of quantitative reactions
- non-quantitative (equilibrium) reactions
- equivalence point(s) for indicator selection
- · buffering regions

1. Use the following pH scale to label the colours for bromothymol blue over the 0–14 pH range. Identify the form of the indicator for each distinct colour using conventional symbols.

2. Problem

What is the approximate pH of an unknown solution?

Evidence

Separate samples of the unknown solution turned blue litmus to red, congo red to blue, and orange IV to yellow.

Analysis

3. Three unknown solutions in unlabelled beakers have pH values of 5.8, 7.8, and 9.8. Write two diagnostic tests using indicators to identify the pH of each solution.

- Use the accompanying sketch of a pH curve for a titration to answer the following questions.
 PH
 Acid-Base Reaction
 PH
 Box Companying sketch of a pH of the pH of
 - (a) Does the burette contain the acid or the base?
 - (b) Is the sample reacted an acid or a base?
 - (c) How many equivalence points are represented? Estimate the pH of each equivalence point.
 - (d) How many quantitative reactions have occurred?
 - (e) Choose the best indicator for each equivalence point?
- 2. Sketch a pH curve for the reaction of sulfuric acid with sodium hydroxide solution. All reaction steps are known to be quantitative. Include reaction equations.

3. A sodium hydrogen phosphate solution is to be titrated with hydrochloric acid. Only one quantitative reaction is observed. Sketch the pH curve and write equilibrium equations.

4. What are two advantages of detecting an endpoint using an indicator as opposed to identifying it with a pH meter?

LSM 16.4F

Student Worksheet LSM 16.4H Acid–Base Stoichiometry, Extra Exercises

1. In a chemical analysis, 25.0 mL of sulfuric acid solution was titrated to the second endpoint with 0.358 mol/L KOH(aq). In the titration, an average volume of 18.2 mL was required. Calculate the molar concentration of the sulfuric acid.

2. Several 10.0 mL vinegar samples were titrated with a standardized 0.582 mol/L solution of sodium hydroxide. An average volume of 13.8 mL of sodium hydroxide was required to reach the phenolphthalein endpoint. What is the concentration of the vinegar solution?

3. A sodium borate solution was titrated to the second endpoint with 0.241 mol/L hydrobromic acid. An average volume of 15.2 mL of hydrobromic acid was required to react with 20.0 mL samples of sodium borate. Calculate the molar concentration of sodium borate.

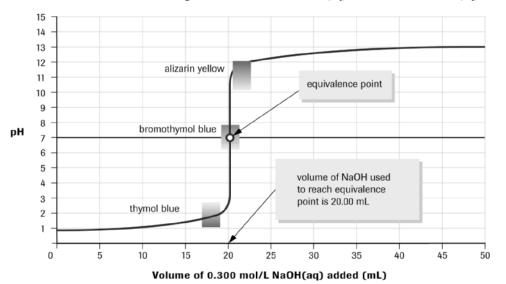
4. Problem

What is the molar concentration of a hydrochloric acid solution?

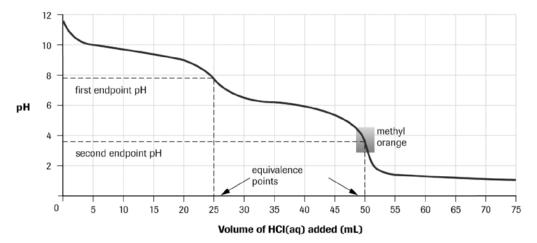
Design

100.0 mL of a standard solution of sodium oxalate was prepared using 1.85 g of the dry solid. Using the second endpoint, 10.0 mL samples were titrated with hydrochloric acid.

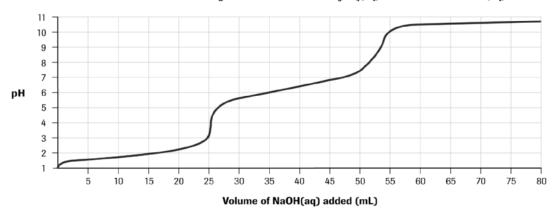
Evidence


Table 1 Titration of 10.0 mL Samples of Na₂OOCCOO(aq) with HCl(aq)

Trial	1	2	3	4
Final burette reading (mL)	16.1	31.5	46.9	16.9
Initial burette reading (mL)	0.3	16.1	31.5	1.5
Comment on endpoint	poor	good	good	good


Analysis

Instructional Master LSM 16.4K Selecting an Indicator for a Titration


Titration Curve for Titrating 20.00 mL of 0.300 mol/L HCl(aq) with 0.300 mol/L NaOH(aq)

Titration Curve for Titrating 25.0 mL of 0.50 mol/L Na2CO3(aq) with 0.50 mol/L HCI(aq)

Titration Curve for Titrating 25.0 mL of 0.50 mol/L H₃PO₄(aq) with 0.50 mol/L NaOH(aq)

Instructional Master

Brønsted–Lowry Concept

SUMMARY Brønsted–Lowry Is a Unifying Concept

The five-step Brønsted–Lowry method to explain and predict acid–base reactions is a preferred, acceptable method because it works for all quantitative and non-quantitative reactions studied so far:

- neutralization reactions
- buffer reactions
- excess reactions

- indicator reactions
- polyprotic reactions
- titration reactions

Copyright © 2007 Thomson Nelson

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

lanowicage	
describe Brønsted–Lowry acids as	
proton donors and bases as proton	
acceptors (16.2)	
write Brønsted–Lowry equations and	
predict whether reactants or products	
are favoured for acid–base	
equilibrium reactions (including	
indicators and polyprotic acids and	
bases) (16.2, 16.4)	
identify polyprotic acids, polyprotic	
bases, conjugate pairs, and	
amphiprotic entities (16.2, 16.4)	
define a buffer as relatively large	
amounts of a conjugate acid-base	
pair in equilibrium that maintain a	
relatively constant pH when small	
amounts of acid or base are added	
(16.4)	
sketch and qualitatively interpret	
titration curves of monoprotic and	
polyprotic acids and bases,	
identifying equivalence points and	
regions of buffering for weak acid-	
strong base, strong acid-weak base,	
and strong acid-strong base	
reactions (16.4) define <i>K</i> w , <i>K</i> a , and <i>K</i> b and use them	
define <i>K</i> w , <i>K</i> a , and <i>K</i> b and use them	
to determine pH, pOH, $[H_3O^+]$, and	
[OH [–]] of acidic and basic solutions	
(16.1, 16.3)	
calculate equilibrium constants and	
concentrations for homogeneous	
systems and Brønsted–Lowry acids	
and bases (excluding buffers) when	
concentrations at equilibrium are	
known, when initial concentrations	
and one equilibrium concentration are	
known, and when the equilibrium	
constant and one equilibrium	
concentration are known (16.1, 16.3)	
	1]

STS

state that the goal of science is	
knowledge about the natural world	
(16.1, 16.2, 16.3, 16.4)	
state that a goal of technology is to	
solve practical problems (16.2, 16.3,	
16.4)	

Skills

OKIIIS		
initiating and planning	design an experiment to show quantitative equilibrium shifts in concentration under a given set of conditions (16.4) describe procedures for safe handling, storage, and disposal of materials used in the laboratory, with reference to WHMIS and consumer product labelling information (16.2, 16.4)	
performing and recording	prepare a buffer to investigate the relative abilities of a buffer and a control to resist a pH change when a small amount of strong acid or strong base is added (16.4)	
analyzing and interpreting	use experimental data to calculate equilibrium constants (16.3)	
communi- cation and teamwork	work cooperatively in addressing problems and apply the skills and conventions of science in communicating information and ideas and in assessing results (16.2, 16.4)	

LSM 16.CS (cont'd)

Key Terms

-		
16.1	ionization constant for water, K_w	
16.2	Brønsted–Lowry acid	
	Brønsted–Lowry base	
	Brønsted–Lowry reaction equation	
	amphiprotic	
	amphoteric	
	conjugate acid–base pair	
16.3	acid ionization constant, K_a	
	base ionization constant, K_{b}	
16.4	pH curve	
	buffering	
	buffer	
	buffer capacity	
10.4	buffering buffer	

Key STS

provide examples of buffers in living systems (Section 16.4; Biology Connection: Homeostasis) appreciate the development of equilibrium and acid–base theories and principles (Section 16.2; Investigation 16.1: Creating an Acid–Base Strength Table; CS: Changing Ideas on Acids and Bases—The Evolution of a Scientific Theory; Section 16.2 Question 3; Sample Problem 16.3; Chapter 15 Review question 5; Unit 8 Review questions 2, 15, 16, 17, 18, 19, 20, 30, 31)		
Homeostasis) appreciate the development of equilibrium and acid–base theories and principles (Section 16.2; Investigation 16.1: Creating an Acid–Base Strength Table; CS: Changing Ideas on Acids and Bases—The Evolution of a Scientific Theory; Section 16.2 Question 3; Sample Problem 16.3; Chapter 15 Review question 5; Unit 8 Review questions 2, 15, 16, 17,	living systems (Section 16.4;	
appreciate the development of equilibrium and acid-base theories and principles (Section 16.2; Investigation 16.1: Creating an Acid-Base Strength Table; CS: Changing Ideas on Acids and Bases—The Evolution of a Scientific Theory; Section 16.2 Question 3; Sample Problem 16.3; Chapter 15 Review question 5; Unit 8 Review questions 2, 15, 16, 17,		
	appreciate the development of equilibrium and acid-base theories and principles (Section 16.2; Investigation 16.1: Creating an Acid-Base Strength Table; CS: Changing Ideas on Acids and Bases—The Evolution of a Scientific Theory; Section 16.2 Question 3; Sample Problem 16.3; Chapter 15 Review question 5; Unit 8 Review questions 2, 15, 16, 17,	

Key Skills

prepare a buffer to investigate	
the relative abilities of a buffer	
and a control to resist a pH	
change when a small amount of	
strong acid or strong base is	
added	
(WA: Simulation—Preparation	
of Buffer Solutions; Investigation	
16.4: Testing a Buffer Effect)	